二、热学
【热学】热学是物理学的一个重要部分。它专门研究热现象的规律及其应用。对热现象的研究:一是由观察和实验入手,总结出热现象规律,构成热现象的宏观理论,叫做热力学;二是从物质的微观结构出发(即以分子、原子的运动和它们之间的相互作用出发),应用统计方法去研究热现象的规律,构成热现象的微观理论,叫做统计物理学。它所研究的范围包括:测温学、量热学、热膨胀以及热传递等。若从广泛的涵义上,热学还包括其他有关热现象研究的热力学、分子物理学和热工学等分科。热力学和统计物理学研究对象是一致的,都是研究物体内部热运动的规律性以及热运动对物体性质的影响,但是研究的方法截然不同。热力学根据观察和实验所总结出来的热力学定律,以严密的逻辑推理来研究宏观物体的热性质,它不涉及物质的微观结构。统计物理学则从物质的微观结构出发,依据每个粒子所遵循的力学规律,用统计学的方法研究宏观物体的热性质。热力学对热现象给出可靠的依据,用以验证微观理论的正确性;统计物理学可深入探讨热现象的本质,使热力学的理论获得更深刻的意义。因此这两种方法,起到了相辅相成的作用,使热现象的研究更加深入。
【热力学】它是研究热现象中物态转变和能量转换的学科。由观察和实验总结出热现象的规律,构成热现象的宏观理论。在19世纪中叶,焦耳等人通过多次实验,将热确定为能的一种形式,从而建立了热力学。热力学的研究是从大量经验中总结了自然界有关热现象的一些共同规律而得出热力学定律(即热力学第零、第一、第二和第三定律),用严密的逻辑推理来研究宏观物体的热性质及规律。热力学所研究的内容,在量子力学发展以前就有了一定的基础,故论及的系统及所持的理论均出于宏观的概念。主要探讨物质系统的平衡状态以及与平衡状态偏离不大的物理、化学过程,近年来,对非平衡状态过程的研究,亦取得一定的成果。热力学不涉及物质内部的微观结构,对热现象的本质亦不能作出解释,这是它的局限性,这些都需要统计物理学来补充、说明并加以发展。
【统计物理学】是用统计方法研究由大量微观粒子组成的物质系统内部热运动规律及其对系统性质的影响。它是从物质的微观结构,即从分子、原子的运动和它们之间的相互作用出发,来研究热现象的规律,构成热现象的微观理论。统计物理学的前身是气体分子运动论。统计物理学是从宏观系统内部的微观结构出发,根据微观粒子所遵从的力学规律,用统计方法,将系统的宏观性质及其变化规律推导出来。所以,统计物理学与热力学两者之间可以相互补充。19世纪在经典力学基础上形成了“统计力学”。在研究气体处于平衡状态下的性质方面取得成就,对热力学已经获得的结果,能从微观角度更深刻地加以阐明。以后,随着研究范围的扩展而取得统计物理学的名称。20世纪以来,由于发现微观粒子具有量子性质之后,在量子力学基础上形成“量子统计物理”。
统计物理学对于许多涉及多体问题的学科都有重要应用。例如,在固体物理学、原子核物理学、物理化学和天体物理学等方面均取得巨大成就。在相变,超导性、超流性、等离子体等方面运用统计物理方法,于近年来亦有很大的进展。
【热】热的概念来自人们对冷热的感觉。它是物质运动表现的形式之一。它的本质是大量的实物粒子(分子、原子等)永不停息地作无规则的运动。热与实物粒子的无规则运动的速度有关,无规则运动越强烈时,则该物体或系统就越热,温度也越高。热的另一种涵义是热量,热量是能量变化的一种量度。热量与温度的概念不同,不能混为一谈。
【热运动】是物质的一种运动形式。宏观物体内部大量微观粒子(如分子、原子、电子等)永不停息的无规则运动称为热运动。它是物质的一种基本运动形式。一个物体或某一系统在热平衡时的温度,取决于他内部微观粒子热运动的状况,热运动越剧烈,它的温度就越高。
【热现象】凡与温度有关的物质系统性质的变化,统称为“热现象”。例如,物体吸热后温度升高,体积膨胀;水受热后变成水蒸气等,都是由于温度发生了变化,物体的性质也随着而变化,这说明热现象是大量分子无规则运动的表现。
【温度】是表示物体冷热程度的物理量。由人的感觉来判断物体的冷热程度,是建立在主观感觉基础上的。为了能客观地反映物体的冷热程度,人们引入了温度的概念。从分子运动论的观点来看,温度是物体内部大量分子无规则热运动剧烈程度的体现。它是物体冷热的内在根据,热运动越剧烈,物体的温度就越高。某一物体温度升高或降低,就标志
kT。式中k为玻尔兹曼常数,T为
气体温度的微观实质是分子平均动能的量度。由此看来,温度是含有统计意义的,它是大量气体分子热运动的集体表现。对于个别分子而言,它的动能可能大于平均动能,也可能小于平均动能。但在温度一定时,它是一个确定的值。对于个别分子,说它温度是多少是没有意义的。
【温标】温度数值的表示方法叫做“温标”。为了定量地确定温度,对物体或系统温度给以具体的数量标志,各种各样温度计的数值都是由温标决定的。为量度物体或系统温度的高低对温度的零点和分度法所做的一种规定,是温度的单位制。建立一种温标,首先选取某种物质的某一随温度变化的属性,并规定测温属性随温度变化的关系;其次是选固定点,规定其温度数值;最后规定一种分度的方法。最早建立的温标是华氏温标、摄氏温标,这些温标统称为经验温标。它们的缺陷是温度读数与测温物质及测温属性有关,测同一热力学系统的温度,若使用摄氏温标标定的不同测温属性的温度计,其读数除固定点外,并不严格一致。经验温标现已废弃不用。为了统一温度的测量,温度的计量工作中采用理想气体温标为标准温标。规定温度与测温属性成正比关系,选水的三相点为固定点。在气体液化点以下及高温下理想气体温标不适用,由于氦的液化温度最低,因此氦温度计有它一定的优越性。国际单位制中采用的温标,是热力学温标。它的单位是开尔文,中文代号是开,国际代号是K。
【摄氏温标】是经验温标之一,亦称“百分温标”。温度符号为t,单位是摄氏度,国际代号是“℃”。摄氏温标是以在一大气压下,纯水的冰点定为0℃。在一大气压下,汽点作为100℃,两个标准点之间分为100等分,每等分代表1℃。在温度计上刻100℃的基准点时,并不是把温度计的水银泡(或其他液体)插在沸腾的水里,而是将温度计悬在蒸汽里。实验表明只有纯净的水在正常情况下沸腾时,沸水的温度才同上面蒸汽温度一样。若水中有了杂质,溶解了别的物质,沸点即将升高,也就是说,要在比纯净水的沸点更高的温度下才会沸腾。如水中含有杂质,当水沸腾时,悬挂在蒸汽里的温度计上凝结的却是纯净的水,因此它的水银柱的指示跟纯净水的沸点相同。在给温度计定沸点时,避免水不纯的影响,应用悬挂温度计的方法。
为了统一摄氏温标和热力学温标,1960年国际计量大会对摄氏温标予以新的定义,规定它应由热力学温标导出,即
t=T-273.15
用摄氏度表示的温度差,也可用“开”表示,但应注意,由上式所定义的摄氏温标的零点与纯水的冰点并不严格相等,沸点也不严格等于100℃。华氏温度计的冰点为32度,沸点为212度,两
【华氏温标】是经验温标之一。在美国的日常生活中,多采用这种温标。规定在一大气压下水的冰点为32度,沸点为212度,两个标准点之间分为180等分,每等分代表1度。华氏温度用字母°F表示。它与
摄氏温度(C)和华氏温度(F)之间的换算关系为
摄氏温标与华氏温标的各种温度计,在玻璃管中根据不同的用途,装有不同的液体(如煤油、酒精或水银),由于液体膨胀与温度之间并不严格遵守线性关系,而且不同的液体和温度的非线性关系彼此也不一样,由于测温物质而影响温标的准确性,为此这些经验温标已在废弃之列。
【国际实用温标】从准确与实用出发,在1927年第七届国际计量大会上决定采用国际温标。由于科学技术不断地发展,工业生产上的需要,国际温标不断修改,目前所采用的国际实用温标,是1968年国际计量委员会对1948年国际实用温标(1960年修正版)作了重要修改而建立的。1968年国际实用温标选取的方法,是根据它所测定的温度可紧密接近热力学温度,而其差值应在目前测定准确度的极限之内。1968年国际实用温标在国际实用开耳文温度和国际实用摄氏温度之间是用符号T68和t68来加以区分的。T68和t68之间的关系是:t68=T68-273.15。T68和t68的单位如在热力学温度T和摄氏温度t中一样仍为开尔文(符号K)和摄氏度(符号℃)。常用的换算公式是T=t+273.15。
【三相点】亦称“三态点”。一般指各种稳定的纯物质处于固态、液态、气态三个相(态)平衡共存时的状态,叫做该物质的“三相点”。该点具有确定的温度和压强。
物态叫做“相”,通常物质是以三种形态存在。即固态、液态、气态,也可称为固相、液相、气相。物体的变化常叫做相变。或者说,在某一系统中,具有相同物理性质均匀的部分亦称为相。相与相间必有明显可分的界面。例如,食盐的水溶液是一相,若食盐水浓度大,有食盐晶体,即成为两相。水和食油混合,是两个液相并存,而不能成为一个相。又如水、冰和汽三相共存时,其温度为273.16K(0.01℃),压强为6.106×102帕。由于在三相点物质具有确定的温度,因此用它来作为确定温标的固定点比选汽点和冰点具有优越性,所以三相点这个固定温度适于作为温标的基点,现在都以水的三相点的温度作为确定温标的固定点。
几种物质三相点的数据
|
温 度 (K) |
压 强 (帕) |
氢 |
13.84 |
7038.2 |
氘 |
18.63 |
17062.4 |
氖 |
24.57 |
43189.2 |
氮 |
63.18 |
12530.2 |
二氧化碳 |
216.55 |
517204 |
水 |
273.16 |
610.5 |
【绝对零度】绝对零度是根据理想气体所遵循的规律,用外推的方法得到的。当温度降低到-273.15℃时,气体的体积将减小到零。若用分子运动论来解释,理想气体分子的平均平动动能由温度T确定,则可将绝对零度与“理想气体分子停止运动时的温度”等同看待。事实上一切实际气体在温度接近-273.15℃时,早已变成液态或固态,它的温度趋于一个极限值,这个极限值就称为绝对零度。绝对零度是温度的最低点,实际上永远也不会达到的。
【温度计】是测定温度的仪器之统称。利用物质的某一物理属性随温度的变化来标志温度。根据使用目的的不同,已设计制造出多种温度计。其设计的依据:如利用固体、液体、气体受温度的影响而热胀冷缩的现象;在定容条件下,气体或蒸气压强因不同温度而变化;热电效应的作用;电阻随温度的变化而变化;以及热辐射的影响等多种。一般说,任何物质的任一物理属性,只要它随温度的改变而发生单调的、显著的变化,都可用来标志温度而制成温度计。
温度计的种类很多,如定容气体温度计、定压气体温度计、液体(水银、酒精、煤油)温度计、铂电阻温度计、温差电偶温度计、辐射高温计、光测高温计等多种类型。在我国气象上常将能自动记录温度变化的仪器称“温度计”。而对无自动记录装置的测温仪器称“温度表”。
【温度表】俗称“寒暑表”。我国气象上将直接能读取数值而无自动记录装置的仪器,统称为温度表。其种类甚多,如干湿球温度表、最低温度表、最高温度表、地面温度表等。家庭使用的温度表,系常见的一种两端封闭内径均匀的毛细玻璃管。封闭的下端是圆球或圆柱形,内注水银、酒精或煤油。由于温度的变化,液柱升降而伸缩。根据液柱顶端所在位置,即可直接读出标度数值。
【水银温度计】它是利用水银热胀、冷缩的性质而制造的一种测温计。高温可以测到300多摄氏度。由于熔点关系,测量-30℃以下的低温时则不能使用。
制造水银温度计,首先应选取壁厚、孔细而内径均匀的玻璃管,经酸洗等过程使管内洁净。一端加热并吹成一个壁薄的球形或圆柱形的容器。水银是在某种特定温度下注入球形容器与玻管之中,此时水银的温度应比以后所测之最高温度还要高些。然后用火焰将灌满水银玻管的顶端封闭。当水银温度降低时开始收缩,于是在水银柱的上部管内出现一段真空。温度计的定标分度,首先要确定两个固定标点,作为永不改变的标记。将温度计液泡部分,插入在一标准大气压下正在熔解的冰块中,当水银柱下降至某一处稳定时,刻一记号作为下固定点。然后再将温度计的整体,置于处在一标准大气压下的水蒸气中,当水银柱上升停在某一位置不动时作一记号为上固定点。此二固定点间的距离,称为基本标距。此标距的长短与温度计的管径以及液泡的容积有关。将这段标距分成100等分,每一等分即为一度。在下固定点处标0°记号,在上固定点标100°记号。在熔点以下及沸点以上还可刻同样长的标度。刻在0°以下的标度,称为冷度,刻在0°以上的称热度。由于温度计的基本标度被均分为100等分,故称百分温度计,又称摄氏温度计。除摄氏温标外也有采用华氏温标的,此温标以32°为冰点,以212°为沸点,其中等分180个刻度。华氏温度计用字母F表示。两种温标关系为
水银温度计存在一定的缺点,例如,玻璃管的内径不可能完全相同,尽管每个刻度与每个刻度之间的距离相等,但由于管的内径不同,则每刻度之间水银液柱的体积并不相等,因而造成误差。当玻璃管内水银受热体积膨胀的同时,温度计的玻璃管及液泡部分的玻璃也受热膨胀。结果所读出的只不过是水银膨胀数值与玻璃膨胀数值之间的差数而已。由于水银的凝固点(-38.87℃)与沸点(356.7℃)的关系,故它的计量只能在这个范围之内,可以测高温。若用以测低温,则必受限制。
【酒精温度计】构造与水银温度计相同,唯管内装有含红色染料的酒精,便于观察,此种温度计是用酒精为工作物质。因酒精的沸点(78℃)较低,凝固点在-117℃,因此多用酒精温度计作测低温物质。
【煤油温度计】煤油温度计的工作物质是煤油,它的沸点一般高于150℃,凝固点低于-30℃。所以煤油温度计的量度范围约为-30℃~150℃。因酒精的沸点是78℃,凝固点是-114℃,酒精温度计能比煤油温度计测更低的温度,但高于78℃的温度它就不能测定了。从中学物理实验室经常要测量的温度范围来看,煤油温度计比酒精温度计更适用。当学生看到温度计的刻度在100℃,却不加分析地把温度计说成是酒精温度计,这是错误的(酒精温度达到78℃就已经沸腾了,岂能有100℃的温度刻度)。目前中学实验室里所用的装有红色工作物质的温度计,一般都是煤油温度计,而不是酒精温度计。
【体温计】是测量人体温度用的温度计。亦称“体温表”或“医用温度计”。体温计的工作物质是水银。它的液泡容积比上面细管的容积大得多。泡里水银,由于受到体温的影响,产生微小的变化,水银体积的膨胀,使管内水银柱的长度发生明显的变化。人体温度的变化一般在35℃到42℃之间,所以体温计的刻度通常是35℃到42℃,而且每度的范围又分成为10分,因此体温计可精确到1/10度。体温计的下部靠近液泡处的管颈是一个很狭窄的曲颈,在测体温时,液泡内的水银,受热体积膨胀,水银可由颈部分上升到管内某位置,当与体温达到热平衡时,水银柱恒定。当体温计离开人体后,外界气温较低,水银遇冷体积收缩,就在狭窄的曲颈部分断开,使已升入管内的部分水银退不回来,仍保持水银柱在与人体接触时所达到的高度。体温计是一种最高温度计,它可以记录这温度计所曾测定的最高温度。用后的体温计应“回表”,即拿着体温计的上部用力往下猛甩,可使已升入管内的水银,重新回到液泡里。其他温度计绝对不能甩动,这是体温计与其他液体温度计的一个主要区别。
【温差电偶温度计】利用温差电偶来测量温度的温度计。将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生。因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计。若在温差电偶的回路里再接入一种或几种不同金属的导线,所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计。这种温度计测温范围很大。例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃。
【分子物理学】物理学的一个学科。分子物理学从物质的微观结构的观点出发,研究气体、液体和固体的基本性质及其热现象的规律。如物体的体积,压强和温度之间的关系;物质的比热容;扩散、热传递、粘滞性等输运过程以及液体的表层性质,相平衡以及简单的相变过程。
【分子运动论】分子运动论是从物质的微观结构出发来阐述热现象规律的理论,例如它阐明了气体的温度是分子平均平动动能大小的标志,大量气体分子对容器器壁的碰撞而产生对容器壁的压强。此外,它还初步揭示了气体的扩散,热传递和粘滞现象的本质,并解释了许多气体实验定律,分子运动论的成就促进了统计物理学的进一步发展。
【分子】由化学键结合起来的单个原子或一组原子,它是物质中能独立存在并保持该物质一切化学性质的最小单位。例如,水分子是由两个氢原子和一个氧原子组成的(H2O)。像氯化钠那样的离子化合物并无明显的分子结构。氯化钠一般写成NaCl,但氯化钠晶体事实上是由氯离子(Cl-)和钠离子(Na+)有规则排列。构成物质的单位是多种多样的,或是原子(如金属)或是离子(如盐类)或是分子(如有机物)。为了简化,在中学物理中,一般把构成物质的单位统称为分子。用油膜法可以粗略地测定分子的大小。分子直径的数量级是10-10米。物理学中有各种不同的方法来测定分子的大小。用不同方法测出的分子的大小并不完全相同,但数量级是相符的。把分子看作小球,是分子运动论中对分子的简化模型,实际上,分子有它复杂的内部结构。
【阿伏伽德罗常数】是化学和物理学中的重要常数之一。1摩尔(简称摩,国际符号是mol)的任何物质,其中含有的粒子数相同。称为“阿伏伽德罗常数”。用“N”表示
N=6.022045×1023摩尔-1。
此常数系意大利化学家阿伏伽德罗发现,因而得名。知道阿伏伽德罗常数,可算出水分子的质量mH2O=3×10-26千克。阿伏伽德罗常数是微观世界的一个重要常数,用分子运动论定量地研究热现象时经常要用到它,它是联系宏观世界和微观世界的桥梁。这一常数将摩尔质量或摩尔体积这种宏观物理量跟分子质量或分子大小这种微观物理量联系了起来。因此阿伏伽德罗常数相当重要。上述为其精确值,通常可取作N=6.02×1023摩尔-1。
【阿伏伽德罗定律】又称“阿伏伽德罗假说”。由压强公式和气体分子的平均平动动能与温度的关系,将得到气体压强的另一表达式:
P=nKT
这一公式表明,在相同的温度T和相同的压强P下,任何气体在相同的体积内所包含的分子数都相等。这一结论叫做“阿伏伽德罗定律”。如在标准状态(大气压值为标准大气压,温度T为273.15K)时,任何气体在1米3中含有的分子数都等于2.6876×1025个/米3。这个数值就称为洛喜密脱常数。由于1摩尔的任何气体所含分子数都相等,所以阿伏伽德罗定律也可表述为:在相同的温度和相同的压强下,1摩尔的任何气体所占有的体积都相同。这一定律仅对理想气体才严格正确。
【物态】亦称“聚集态”。是物质分子集合的状态,是实物存在的形式,在通常条件下,物质有三种不同的聚集态:固态、液态和气态,即平常所说的物质三态。固态和液态,统称为凝聚态。它们在一定的条件下可以平衡共存,也可以相互转变。例如,在一个标准大气压,0℃时,冰、水混合物可以平衡共存,当温度和压强变化时,该混合物可以完全变成水,或完全结成冰。除上述物质三态外,近年来我们还把“等离子体”称为物质的第四态,把存在于地球内部的超高压、高温状态的物质称为物质的第五态。此外还有超导态和超流态。
【固体】凡具有一定体积和形态的物体称为“固体”,它是物质存在的基本状态之一。组成固体的分子之间的距离很小,分子之间的作用力很大,绝大多数分子只能在平衡位置附近作无规则振动,所以固体能保持一定的体积和形状。在受到不太大的外力作用时,其体积和形状改变很小。当撤去外力的作用,能恢复原状的物体称弹性体,不能完全恢复的称塑性体。构成固体的粒子可以是原子、离子或分子,这些粒子都有固定的平衡位置。但由于这些粒子的排列方式不同,固体又可分为两类,即晶体和非晶体。如果粒子的排列具有规则的几何形状,在空间是三维重复排列,这样的物质叫晶体,如金属、食盐、金刚石等。如果组成固体的粒子杂乱堆积,分布混乱,这样的物质叫非晶体。如玻璃、石蜡、沥青等。晶体有一定的熔点,而非晶体却没有固定的熔解温度。非晶体的熔解和凝固过程是随温度的改变而逐渐完成的。它的固态和液态之间没有明显的界限。
【液体】液体的分子结构介于固体与气体之间,它有一定的体积,却没有一定的形状。液体的形状决定于容器的形状。在外力作用下,液体被压缩性小,不易改变其体积,但流动性较大。由于受重力的作用,液面呈水平面,即和重力相垂直的表面。从微观结构来看,液体分子之间的距离要比气体分子之间的距离小得多,所以液体分子彼此之间是受分子力约束的,在一般情况下分子不容易逃逸。液体分子一般只在平衡位置附近作无规则振动,在振动过程中各分子的能量将发生变化。当某些分子的能量大到一定程度时,将作相对的移动改变它的平衡位置,所以液体具有流动性。液体在任何温度下都能蒸发,若加热到沸点时迅速变为气体。若将液体冷却,则在凝固点凝结为固体(晶体)或逐渐失去流动性。
【气体】是物质三种聚集状态之一。气体分子间的距离很大,分子间的相互作用力很小,彼此之间不能约束,所以气体分子的运动速度较快,因此它的体积和形状都随着容器而改变。气体分子都在作无规则的热运动,在它们之间没有发生碰撞(或碰撞器壁)之前,气体分子作匀速直线运动,只有在彼此之间发生碰撞时,才改变运动的方向和运动速度的大小。由于和器壁碰撞而产生压强,因此温度越高、分子运动越剧烈,压强就越大。又因为气体分子间的距离远远大于分子本身的体积,所以气体的密度较小,且很容易被压缩。任何气体都可以用降低温度或在临界温度以下压缩气体体积的方法使它变为液体。所以,对一定量的气体而言,它既没有一定的体积,也没有一定的形状,它总是充满盛它的容器。根据阿伏伽德罗定律,各种气体在相同的温度和压强下,在相同的体积里所包含的分子数都相同。
【晶体】具有规则几何形状的固体。其内部结构中的原子、离子或分子都在空间呈有规则的三维重复排列而组成一定型式的晶格。这种排列称为晶体结构。晶体点阵是晶体粒子所在位置的点在空间的排列。相应地在外形上表现为一定形状的几何多面体,这是它的宏观特性。同一种晶体的外形不完全一样,但却有共同的特点。各相应晶面间的夹角恒定不变,这条规律称为晶面角守恒定律,它是晶体学中重要的定律之一,是鉴别各种矿石的依据。晶体的一个基本特性是各向异性,即在各个不同的方向上具有不同的物理性质,如力学性质(硬度、弹性模量等等)、热学性质(热膨胀系数、导热系数等等)、电学性质(介电常数、电阻率等等)光学性质(吸收系数、折射率等等)。例如,外力作用在云母的结晶薄片上,沿平行于薄片的平面很容易裂开,但在薄片上裂开则非易事。岩盐则容易裂成立方体。这种易于劈裂的平面称为解理面。在云母片上涂层薄石蜡,用烧热的钢针触云母片的反面,便会以接触点为中心,逐渐化成椭圆形,说明云母在不同方向上导热系数不同。晶体的热膨胀也具各向异性,如石墨加热时沿某些方向膨胀,沿另一些方向收缩。晶体的另一基本特点是有一定的熔点,不同的晶体有它不相同的熔点。且在熔解过程中温度保持不变。
对晶体微观结构的认识是随生产和科学的发展而逐渐深入的。1860年就有人设想晶体是由原子规则排列而成的,1912年劳埃用X射线衍射现象证实这一假设。现在已能用电子显微镜对晶体内部结构进行观察和照相,更有力地证明假想的正确性。
【非晶体】指组成它的原子或离子不是作有规律排列的固态物质。如玻璃、松脂、沥青、橡胶、塑料、人造丝等都是非晶体。从本质上说,非晶体是粘滞性很大的液体。解理面的存在说明晶体在不同方向上具有不同的力学性质,非晶体破碎时因各向同性而没有解理面,例如,玻璃碎片的形状就是任意的。若在玻璃上涂一薄层石蜡,用烧热的钢针触及背面,则以触点为中心,将见到熔化的石蜡成圆形。这说明导热系数相同。非晶体没有固定的熔点,随着温度升高,物质首先变软,然后由稠逐渐变稀,成为流体。具有一定的熔点是一切晶体的宏观特性,也是晶体和非晶体的主要区别。
晶体和非晶体之间是可以转化的。许多物质存在的形式,可能是晶体,也可能是非晶体。将水晶熔化后使其冷却,即成非晶体的石英玻璃,它的转化过程需要一定的条件。
【各向同性】亦称均质性。物理性质不随量度方向变化的特性。即沿物体不同方向所测得的性能,显示出同样的数值。如所有的气体、液体(液晶除外)以及非晶质物质都显示各向同性。例如,金属和岩石虽然没有规则的几何外形,各方向的物理性质也都相同,但因为它们是由许多晶粒构成的,实质上它们是晶体,也具有一定的熔点。由于晶粒在空间方位上排列是无规则的,所以金属的整体表现出各向同性。
【各向异性】亦称非均质性。物理性质随量度的方向而变化的通性,称为各向异性。各向异性是晶体的重要特征之一。即在各个不同的方向上具有不同的物理性质,如力学、热学、电学、光学性质等。参见“晶体”条。
【多晶体】由许多晶体(称为晶料)构成的物体,称多晶体。一块晶体是由许多小的晶粒聚合起来组成的。每一晶粒又由许多原子构成。原子在每一晶粒中作有规则的整齐排列,各个晶粒中原子的排列方式都是相同的。但是在一块晶体中,各个晶粒的取向彼此不同,晶粒与晶粒之间并没有按照一定的规则排列。尽管每个晶粒内部原子排列很整齐,但由于一块晶体内部各个晶粒的排列不规则,总的来看是杂乱无章的,这样的多晶体不能用来制造晶体管。例如多晶硅可用来拉制单晶,称为单晶硅。掺有特定微量杂质的单晶硅,可制成大功率晶体管、整流器及太阳能电池等。
【单晶体】简称“单晶”。单个晶体构成的物体。在单晶体中所有晶胞均呈相同的位向。单晶体具有各向异性。自然界存在的单晶,如金刚石的晶体等。亦可由人工将多晶体拉制成单晶体,如电子器件中所用的锗及硅的单晶体。
【解理面】晶体中易于劈裂的平面称为“解理面”。凡显露在晶体外表的晶面往往是一些解理面。例如,云母结晶薄片,在外力作用下很容易沿平行于薄片的平面裂开,石膏也容易沿一定方向裂成薄片,岩盐则容易裂成立方体。解理面的存在,说明晶体在不同方向上具有不同的力学性质。非晶体破碎时因各向同性而没有解理面,例如,玻璃碎片形状就是完全任意的。
【结合力】晶体中粒子之间存在着相互作用力,这种力称为“结合力”。这种力使粒子规则地聚集在一起形成空间点阵,使晶体具有弹性、具有确定的熔点和熔解热,决定晶体的热膨胀系数等等。因此结合力是决定晶体性质的一个主要因素。可从四种典型的结合力(离子键、共价键、范德瓦耳斯键和金属键)的本质和有关结合力的规律来进一步探讨。
【离子键】将正、负离子结合在一起的静电力,称为“离子键”。由离子键的作用而组成的晶体,称为离子晶体。最典型的离子晶体是NaCl。由于离子键的作用强,因此离子晶体具有高的熔点,低的挥发性和大的压缩模量。
【共价键】因共有电子而产生的结合力称为“共价键”。例如氢分子就是氢原子靠共价键而形成的。完全由负电性元素组成晶体时,粒子之间的结合力就是共价键。由共价键的作用而组成的晶体称为原子晶体,例如,金刚石和金刚砂(SiC)为典型的原子晶体。由于共价键的作用强,所以原子晶体硬度大、熔点高、导电性差、挥发性慢。例如,硅、锗、碲这些半导体中的重要材料都是原子晶体。
【金属键】正离子与自由电子的总体之间的作用力使各粒子结合在一起,这种结合力称为“金属键”。这种结合的特点是电子的“共有化”。在结合时,原来分属各自原子的价电子不再被束缚于其本身,而为所有“原子实”所共有。于是共有化电子形成的负电子云和浸在这个负电子云中的带正电的原子实之间出现库仑作用,原子越紧密,势能越低,从而把原子聚合在一起。由金属键的作用而组成的晶体叫金属晶体,简称金属。因此金属可以具有较高的熔点,高硬度和低挥发性,还具有导电、导热性能好和金属光泽,以及较大的范性。
【结合能】分散的原子(离子或分子)在结合成稳定晶体的过程中,所释放出来的能量称为“结合能”。如以EN表示组成晶体的N个原子在自由时的总能量,E0为晶体的总能量,则结合能E6可表示为
E6=EN-E0
虽然四种化学键的性质不同,起源不同,但具有共同的特征即:排斥力和吸引力两部分。结合能也有排斥和吸引两部分,并与r有关。例如,在范德瓦尔斯键和离子键的情况下,整个晶体的相互作用能与气体分子间的势能相似,可写成
表示引力所引起的相互作用能,r是两相邻粒子间的距离。由于排斥能随距离的变化比吸引能迅速,因而m>n。Am、An、m、n的大小由晶体的结构和作用力的性质所决定。
【分子力】组成物体的分子间在距离相当近时所显示的相互作用力。这种相互作用在分子间距r<10-8米时才显示出来。当分子间距r<10-10米时,分子之间表现为斥力,而当分子间距处于10-8米>r>10-10米的范围内,分子之间又表现为引力。如图2-1所示。
当r<r0(r0约为10-10米左右)时,两分子之间的引力和斥力将随距离的缩小而迅速增大,引力比斥力增长慢,总的表现是斥力。当r>r0时,两分子间的斥力和引力都随距离的增大而减小,但引力减小得慢,总的表现出是一种引力。当r=r0时,两分子之间的引力和斥力相等,作用的合力为零。分子间的作用同时存在引力和斥力,由于这两个力随分子间距离变化的情况不同,所表现出来的合力有时为引力,有时为斥力,有时为零。分子力的本质相当复杂,它与分子的电性结构有密切关系。对于气体,在一般条件下,分子之间的距离较大,其分子力是微不足道的,可以忽略。但在低温、高压情况下,分子力不能忽略。固体和液体分子聚集的主要因素是分子力,使它们有一系列不同于气体的性质。此外,分子之间的作用力在不同的情况下表现的形式是不同的。有时表现为“内聚力”,有时表现为“附着力”。
【内聚力】是在同种物质内部相邻各部分之间的相互吸引力,这种相互吸引力是同种物质分子之间存在分子力的表现。只有在各分子十分接近时(小于10-6厘米)才显示出来。内聚力能使物质聚集成液体或固体。特别是在与固体接触的液体附着层中,由于内聚力与附着力相对大小的不同,致使液体浸润固体或不浸润固体。
【附着力】是在两种不同物质的接触处所发生的相互吸引力。这种相互吸引力是两种物质分子之间存在分子力的表现。只有在这两种物质的分子十分接近(小于10-8米)时才显示出来。从微观角度来看固体表面总是“粗糙”的,所以两固体接触时很难显示附着力的作用。液体与固体则能密切接触,它们之间就容易显示附着力的作用。液体浸润固体的现象,就是附着力发生作用的结果。总之附着力和内聚力都来源于分子之间的作用力,但不能把分子之间的作用力称为附着力或内聚力,因附着力和内聚力是指物质各部分间的相互作用,并不是指某几个分子之间的相互作用。
【表面张力】液体表面分子间的吸引力。即液体表面的分子有一种使其面积缩成最小的力,或称一种抵抗表面积扩张的力,此力称“表面张力”。液体表面是指液体与空气或其他液体相接触的自由面。若不指明,即可认为相对于空气而言。表面张力的大小与接触面的物质有密切关系。此外,表面张力还与温度有关,温度越高,表面张力越小。表面张力的方向总是与液面相切,与分界线相垂直。若在液面作一长为L的直线,将液面分成两部分,这两部分之间的相互牵引力为F,则表面张力F=σL。其中σ为液体表面张力系数。表面张力的单位为牛顿/米。由于表面张力的作用,液滴表面有收缩到最小的趋势,而使液滴成近似球形的状态。
【液体的表面层】液体自由面以下厚度等于分子力作用半径的一层液体层,叫做“液体表面层”。从微观角度来看,液体表面并不是一个几何面,而是有一定厚度的薄层。由于表面层内的分子力作用,使分子都受到一个与液体自由面相垂直、方向指向液体内部的作用力。表面张力就是由表面层中应力的各向异性所引起的。
【液体的附着层】设液体分子的分子力作用半径为r,固体分子的分子力作用半径为l,当液体与固体接触时,在界面处液体一侧厚度等于r(当r>l时),或等于l(当l>r时)的一层液体层,叫做液体的附着层。在附着层中的液体分子,是处于液体与固体两种物质分子的分子力相互作用下,于是在与固体接触处的液面将出现浸润、不浸润、弯月面以及毛细现象等。
【浸润现象】亦称润湿现象。当液体与固体接触时,液体的附着层将沿固体表面延伸。当接触角θ为锐角时,液体润湿固体,若θ为零时,液体将展延到全部固体表面上,这种现象叫做“浸润现象”。如图2-2a、b所示。润湿现象的产生与液体和固体的性质有关。同一种液体,能润湿某些固体的表面,但对另外某些固体的表面就很难润湿。例如,水能润湿玻璃,但不能润湿石蜡。造成浸润现象的原因,可从能量的观点来说明。如图2-3所示。A为附着层中任一分子,在附着力大于内聚力的情况下,分子A所受的合力与附着层相垂直,指向固体,此时,分子在附着层内比在液体内部具有较小的势能,液体分子要尽量挤入附着层,结果使附着层扩展。附着层中的液体分子越多,系统的能量就越低,状态也就越稳定。因此引起了附着层沿固体表面延展而将固体润湿。
【不浸润现象】亦称不润湿现象。当液体与固体接触时,液体的附着层将沿固体表面收缩。当接触角θ为钝角时,液体不润湿固体,若θ=π时,液体完全不润湿固体。这种现象称为液体不浸润现象。如图2-4a、b所示。不润湿现象的产生与液体和固体性质有关。同一种液体,能润湿某些固体的表面,但不能润湿另一些固体的表面。例如,水银不能润湿玻璃,却能润湿干净的锌板、铜板、铁板。造成不浸润现象的原因,可从能量的观点来说明。
如图2-5所示。A为附着层中任一分子,在内聚力大于附着力的情况下,分子A受到的合力f垂直于附着层指向液体内部,此时,若将一个分子从液体内部移到附着层,必须反抗合力f作功,结果将使附着层中势能增大。附着层中的液体分子越少,系统的能量就越低,状态就越稳定,因此附着层就有缩小的趋势,宏观上就表现出液体不被固体所吸附。当然液体就不能润湿固体了。
【弯月面】由于液体对固体浸润或不浸润的作用,使液体在圆柱形的管子里,呈现不同的液面。凡不浸润固体的液体表面呈凸状。例如水银装在玻璃管内,液面即成凸状,而浸润体的液体表面则成凹状,例如,水装在玻璃管内其液面即成凹面状态。这些弯曲的液面,统称为弯月面。
【布朗运动】悬浮在液体或气体中的微粒所作的永不停息的无规则运动,叫做布朗运动。作布朗运动的微粒(直径约为10-15~10-3厘米)称为布朗微粒。布朗运动是英国植物学家布朗于1827年观察悬浮在溶液中花粉运动时发现的。这些小的颗粒,为液体的分子所包围,由于液体分子的热运动,小颗粒受到来自各个方向液体分子的碰撞,布朗粒子受到不平衡的冲撞,而作沿冲量较大方向的运动。又因为这种不平衡的冲撞,使布朗微粒得到的冲量不断改变方向。所以布朗微粒作无规则的运动。温度越高,布朗运动越剧烈。它间接显示了物质分子处于永恒的,无规则的运动之中,所以,布朗运动只反映了液体分子热运动所产生的结果,它并不能代表液体分子本身的热运动。布朗运动的颗粒并不是单一的分子,每个小颗粒都含有千百万个分子。因此,小颗粒的布朗运动只间接地揭露了分子的运动,并不就是分子运动。由于分子的频繁碰撞,每个小颗粒在液体中受周围液体分子的碰撞每秒钟约有1021次。在气体中由于气体分子的密度较低,小颗粒受气体分子的碰撞每秒至少也有1015次。在这样频繁的碰撞下是很难观测的。通常在显微镜下观察到的仅是微粒经过数秒或数十秒钟运动的总结果。
但是,布朗运动并不限于上述悬浮在液体或气体中的布朗微粒,一切很小的物体受到周围介质分子的撞击,也会在其平衡位置附近不停地作微小的无规则颤动。例如,灵敏电流计上的小镜以及其他仪器上悬挂的细丝,都会受到周围空气分子的碰撞而产生无规则的扭摆或颤动。
【毛细管】凡内径很细的管子叫“毛细管”。通常指的是内径等于或小于1毫米的细管,因管径有的细如毛发故称毛细管。例如,水银温度计、钢笔尖部的狭缝、毛巾和吸墨纸纤维间的缝隙、土壤结构中的细隙以及植物的根、茎、叶的脉络等,都可认为是毛细管。
【毛细现象】插入液体中的毛细管,管内外的液面会出现高度差。当浸润管壁的液体在毛细管中上升(即管内液面高于管外)或当不浸润管壁的液体在毛细管中下降(即管内液面低于管外),这种现象叫做“毛细现象”。产生毛细现象原因之一是由于附着层中分子的附着力与内聚力的作用,造成浸润或不浸润,因而使毛细管中的液面呈现弯月形。原因之二是由于存在表面张力,从而使弯曲液面产生附加压强。由于弯月面的形成,使得沿液面切面方向作用的表面张力的合力,在凸弯月面处指向液体内部;在凹弯月面处指向液体外部。由于合力的作用使弯月面下液体的压强发生了变化——对液体产生一个附加压强,凸弯月面下液体的压强大于水平液面下液体的压强,而凹弯月面下液体的压强小于水平液面下液体的压强。根据在盛着同一液体的连通器中,同一高度处各点的压强都相等的道理,当毛细管里的液面是凹弯月面时,液体不断地上升,直到上升液柱的静压强抵消了附加压强为止;同样,当液面呈凸月面时,毛细管里的液体也将下降。
当液体浸润管壁致使跟管壁接触的液面是竖直的,而且表面张力的合力也竖直向上时,若毛细管内半径为r,液体表面张力系数是σ,沿周界2πr作用的表面张力的合力等于2πrσ。在液面停止上升时,此一作用力恰好跟毛细管中液体柱的重量相平衡。若液柱上升高度为h,液体密度是ρ,则得
2πrσ=πr2hρg
因而液柱上升高度是
【半透膜】只允许某种混合气体或溶液中的某一种物质透过而不允许另一种物质透过的薄膜,叫做半透膜。例如,动物的膀胱,只允许水分子通过,而不允许糖的分子透过。肠壁膜、玻璃纸等,主要由于膜的微细孔而形成半透膜,半透膜性能与孔的大小有关。
【渗透】被半透膜所隔开的两种液体,当处于相同的压强时,纯溶剂通过半透膜而进入溶液的现象,称为渗透。渗透作用不仅发生于纯溶剂和溶液之间,而且还可以在同种不同浓度溶液之间发生。低浓度的溶液通过半透膜进入高浓度的溶液中。砂糖、食盐等结晶体之水溶液,易通过半透膜,而糊状、胶状等非结晶体则不能通过。
渗透现象,在生物机体内发生的许多过程都与此有关。如各物浸于水中则膨胀;植物从其根部吸收养分;动物体内的养分,透过薄膜而进入血液中等现象都是渗透作用。
【渗透压强】简称渗透压。当溶液和溶剂之间被半透膜隔开时,纯溶剂会通过半透膜进入溶液而使溶液变淡。若在原溶液上,加一适当的压强,恰好阻止了纯溶剂进入溶液,此时,所施加的压强就等于原溶液中溶质的渗透压强。当浓度不太大时,溶液的渗透压与浓度及绝对温度成正比,而与纯溶剂的压强无关。根据范托夫理论,渗透压P在稀溶液时等于
这就是用来表示渗透压强的范托夫公式,由公式知:若温度一定,溶质的渗透压强P与溶液浓度C成正比;若浓度一定,溶质的渗透压强P与溶液的绝对温度T成正比;对不同的溶质,若浓度和温度均相同,则渗透压强P与溶质的摩尔质量μ成反比。此公式只适用于不导电的稀溶液;而不适用于电解液和浓度较高的非导电溶液。
【摩尔】它是国际单位制中物质的量的基本单位,符号为mol。含有的基本单元数与0.012千克碳12的原子数相等。使用这单位时必须指明是什么样的基本单元,它可以是原子、分子、离子、电子、光子等。1摩尔含有6.02252×1023个基本单元。1摩尔原子量为A的元素具有A克质量(以前称1克原子)。1摩尔分子量为M的化合物具有M克质量(以前称为1克分子)。
【扩散】由于粒子(原子、分子或分子集团)的热运动自发地产生物质迁移现象叫“扩散”。扩散可以在同一物质的一相或固、液、气多相间进行。也可以在不同的固体、液体和气体间进行。主要由于浓度差或温度差所引起。一般是从浓度较大的区域向浓度较小的区域扩散,直到相内各部分的浓度达到均匀或两相间的浓度达到平衡时为止。物质直接互相接触时,称自由扩散。若扩散是经过隔离物质进行时,则称为渗透。
在自然界中扩散现象起着很大的作用。它使整个地球表面附近的大气保持相同的成分;土壤里所含有的各种盐类溶液的扩散,便于植物吸收,以利生长。此外在半导体,冶金等很多行业都应用扩散,以达目的。扩散,热传导和粘性通称为输运现象,其分别将物质(质量)、热能、动量由一位置移至另一位置,从而达到浓度或温度的均匀。
【吸收】物质吸取其他实物或能量的过程。气体被液体或固体吸取,或液体被固体所吸取。在吸收过程中,一种物质将另一种物质吸进体内与其融和或化合。例如,硫酸或石灰吸收水分;血液吸收营养;毡毯、矿物棉、软质纤维板及膨胀珍珠岩等材料可吸收噪声;用化学木浆或棉浆制成纸质粗松的吸墨纸,用来吸干墨水。吸收气体或液体的固体,往往具有多孔结构。当声波、光波、电磁波的辐射,投射到介质表面时,一部分被表面反射,一部分被吸收而转变为其他形式的能量。当能量在介质中沿某一方向传播时,随入射深度逐渐被介质吸收。例如玻璃吸收紫外线,水吸收声波,金属吸收X射线等。
【吸附】在固体或液体表面对气体或溶质的吸着,而形成一层某种物质的原子和分子的过程。一切固体的表面都从周围的大气中吸附了一层气体。吸附层可以是化学键的结合(化学吸附),也可以是范德瓦耳斯力的结合(物理吸附)。物理吸附是以“分子间力”相互吸引的,例如活性炭吸附各种气体。化学吸附,一般吸附热较大,如镍催化剂吸附氢气。在防毒、脱色等方面,吸附现象起一定的作用。
【液晶】是某些有机化合物,在一定温度范围内,并不由固态直接变为液态,而呈现一种中间状态,这种处在过渡状态的物质称为“液晶”。即“液态晶体”的简称。液晶的力学性质,像是液体,具有液体的流动性。它的光学性质像是晶体,具有晶体的有序性。从某个方面来看,液晶的分子排列比较整齐,有特殊的取向,分子运动也有特定的规律,因而液晶既有液体的流动性,又具有表面张力。但从另一方面看,分子排列杂乱无章,只有近程有序特点,而没有不可改变的固定结构,因此它也呈现某些晶体的光学性质(如光学的各向异性、双折射、圆二向色散等)。液晶只能存在于一定的温度范围内,这一温度范围的下限T1称为熔点,其上限T2称清亮点。当温度T<T1时,液晶就变为普通的晶体,失去流动性;当温度T>T2时,液晶就变成普通的透明液体,失去上述的光学性质,称为“各向同性液”。只有在这个温度范围内,物质才处于液晶态,才具有种种奇特的性质和许多特殊的用途。根据分子的不同排列情况,液晶可分为向列型,胆甾型和近晶型三种。近年来胆甾型液晶,用于温度指示、无损伤探及医疗诊断方面。向列型液晶已用于电子工业,作为显示的材料,还用于分析化学(气相色谱和核磁共振)等方面。早在1881年就已发现液晶,受条件限制发展较慢,到1968年发现液晶的动态散射现象后,才获得进展。
【热质说】是在19世纪初期以前流行的一种对热的本性解释的学说。它认为“热”是一种没有质量,也没有体积的流质,称之为“热质”。含热质越多的物体,温度就越高,所以物体温度的高低是取决于热质的含量。它还认为热质可以渗入一切物体之中,热质可以从温度高的物体向温度低的物体流动。当时就有人发现热质说对摩擦生热等现象无法解释,而且是矛盾的。后来人们逐渐认识到热现象是与构成物质的微粒的运动相联系,热质并不存在。到19世纪中期有关热质说即被废弃。
【热传递】亦称“传热”。物质系统间的能量转移过程。即内能从一个物体转移到另一个物体,或者从物体的一部分转移到同一物体邻近部分的过程,叫做“热传递”。内能永远自发地从温度高的物体向温度低的物体传递。在所有条件都相同的情况下,两个物体温度相差越大,内能的传递速度也快,当冷热程度不同的物体互相接触时,热传递要进行到它们的温度相等时才会停止,即达到热平衡。一个物体不同部分的温度有差别,热传递在物体内部也要进行,直到温度相同为止。虽然参加热传递过程的物体的温度将发生这样或那样的变化,但传递的能量与温度的变化之间没有必然的联系。
热传递的方式有三种:即对流、传导和辐射。这三种热传递的方式往往是伴随着进行的。
【热接触】在两个系统相互接触时,在系统间发生了热量的传递,这种接触即称为热接触。
【热平衡】当两个系统互相接触时,如有温度的差异,其各自的状态可能发生变化,一段时间后,不再发生热量的传递,两系统将达到热平衡状态。这种热平衡是经过热传递出现的。某一系统,与外界接触时,其内部温度各处均匀,且与外界的温度相等,亦呈现热平衡。
【热传导】亦称“导热”。是热传递三种基本方式之一。它是固体中热传递的主要方式,在不流动的液体或气体层中层层传递,在流动情况下往往与对流同时发生。热传导实质是由大量物质的粒子热运动互相撞击,而使能量从物体的高温部分传至低温部分,或由高温物体传给低温物体的过程。在固体中,热传导的微观过程是:在温度高的部分,晶体中结点上的微粒振动动能较大。在低温部分,微粒振动动能较小。因微粒的振动互相联系,所以在晶体内部就发生微粒的振动,动能由动能大的部分向动能小的部分传递。在固体中热的传导,就是能量的迁移。在金属物质中,因存在大量的自由电子,在不停地作无规则的热运动。自由电子在金属晶体中对热的传导起主要作用。在液体中热传导表现为:液体分子在温度高的区域热运动比较强,由于液体分子之间存在着相互作用,热运动的能量将逐渐向周围层层传递,引起了热传导现象。由于热传导系数小,传导的较慢,它与固体相同,而不同于气体;气体依靠分子的无规则热运动以及分子间的碰撞,在气体内部发生能量迁移,从而形成宏观上的热量传递。
【对流】是流体(液体和气体)热传递的主要方式。热对流指的是液体或气体由于本身的宏观运动而使较热部分和较冷部分之间通过循环流动的方式相互掺和,以达到温度趋于均匀的过程。
对流可分自然对流和强迫对流两种:自然对流是由于流体温度不均匀引起流体内部密度或压强变化而形成的自然流动。例如,气压的变化,空气流动,风的形成,地面空气受热上升,上下层空气产生循环对流等;而强制对流是因受外力作用或与高温物体接触,受迫而流动的,叫强制对流。例如,由于人工的搅拌,或机械力的作用(如鼓风机、水泵等),完全受外界因素的促使而形成对流的。
【热辐射】热的一种传递方式。它不依赖物质的接触而由热源自身的温度作用向外发射能量,这种传热方式叫“热辐射”。它和热的传导、对流不同。它不依靠媒质而把热直接从一个系统传给另一系统。热辐射是以电磁波辐射的形式发射出能量,温度的高低,决定于辐射的强弱。温度较低时,主要以不可见的红外光进行辐射,当温度为300℃时,热辐射中最强的波长在5×10-4厘米左右,即在红外区。当物体的温度在500℃以上至800℃时,热辐射中最强的波长成分在可见光区。例如,太阳表面温度为6000℃,它是以热辐射的形式,经宇宙空间传给地球的。这是热辐射远距离传热的主要方式。近距离的热源,除对流、传导外,亦将以辐射的方式传递热量。热辐射有时亦称红外辐射,波长范围约0.7微米到1毫米,为可见光谱中红光端以外的电磁辐射。
关于热辐射,其重要规律有四个:基尔霍夫辐射定律、普朗克辐射分布定律、斯蒂藩—玻耳兹曼定律、维恩位移定律。这四个定律,有时统称为热辐射定律。
【保温瓶】此容器能使放置其中之物体保持较长时间温度不变。它既可使开水的温度在一相当长的时间内保持不下降,又可使冰在一个相当长的时间内保持不熔化。保温瓶的玻璃和软木塞是热的不良导体,内、外瓶胆互不接触,防止热的传导。夹层间已被抽成真空,防止对流作用。在夹层的玻璃壁上镀一薄层银(实际镀的是水银),光亮面能把辐射出去的内能反射回来。因此保温瓶把传导、对流、辐射三种作用尽可能地减少,从而起到保温作用。
【热绝缘】阻止或减少热能传递的任何方法谓之“热绝缘”。例如,用泡沫材料或锯末填充的空心墙或屋顶棚,起绝热作用。
【热绝缘体】不易传热的材料,亦称热的不良导体。如石棉等很多材料都是多孔的或纤维状的固体,它们能把空气封闭在小孔内。气体不易导热,并防止对流。瓷、纸、木头、玻璃、皮革等是热的不良导体。羊毛、棉花、软木、除水银外的液体、以及气体等都是热的绝缘体。
【导热体】具有相当高热导性能的材料。一般情况下各种金属都是良好的导热体,最善于传热的是银。
【热动平衡】当系统处于平衡状态时,其宏观物理性质是不随时间变化的,但从微观方面来看,组成系统的粒子却处于永不停息的热运动之中。在热力学中的平衡是动的平衡,故称作“热动平衡”。例如,若将两个处于不同温度的铜块放在一起,将发生热量的传递,直到两个物体的温度相同时,这两个物体就处于热平衡。液体与其相接触的饱和蒸气处于平衡状态。从宏观上看,压强、密度、温度等是不变化的。在这种情况下,分子仍在从液态变成气态,同时分子以同样速率从蒸气回到液体。因此称这种类型的平衡为热动平衡。
【红热】系统的大量微观粒子(分子、原子等)的混乱运动,即组成宏观物体或系统的大量微观粒子的无规则运动。这种形式的运动越剧烈,那么,由这些微观粒子所组成的物体或系统就越热。随着温度升高,物体开始发出可见光,首先是波长较长的红色部分,由暗红色逐渐变成橙红色。处于这种红热状态的物体,温度为500~1200℃之间。温度再升高,物体将由红热转换为白炽状态。物体受热达到红光的状态称为红热。
【白热】系统的温度升高到1200~1500℃时,系统所发出的可见光中除波长较长的红、黄色光外,还有较多的绿、蓝色波长较短的光,呈现耀眼的白光。此时系统处于白炽状态。这种状态谓之白热。参见“红热”条。
【热膨胀】物体因温度改变而发生的膨胀现象叫“热膨胀”。通常是指外压强不变的情况下,大多数物质在温度升高时,其体积增大,温度降低时体积缩小。在相同条件下,气体膨胀最大,液体膨胀次之,固体膨胀最小。也有少数物质在一定的温度范围内,温度升高时,其体积反而减小。因为物体温度升高时,分子运动的平均动能增大,分子间的距离也增大,物体的体积随之而扩大;温度降低,物体冷却时分子的平均动能变小,使分子间距离缩短,于是物体的体积就要缩小。又由于固体、液体和气体分子运动的平均动能大小不同,因而从热膨胀的宏观现象来看亦有显著的区别。
【膨胀系数】为表征物体受热时,其长度、面积、体积变化的程度,而引入的物理量。它是线膨胀系数、面膨胀系数和体膨胀系数的总称。
【固体热膨胀】固体热膨胀现象,从微观的观点来分析,它是由于固体中相邻粒子间的平均距离随温度的升高而增大引起的。晶体中两相邻粒子间的势能是它们中心距离的函数,根据这种函数关系所描绘的曲线,如图2-6所示,称为势能曲线。它是一条非对称曲线。在一定温度下,粒子在平衡位置附近振动、具有的动能为EK,总能量为EK与相互作用能EP之和,它在整个运动过程中是守恒的。图中,粒子间最接近的距离是r′,最远的距离是r″。由于距离减小所引起的斥力增长比由于距离增大所引起的引力下降快的多,因而粒子间接近的距离与粒子间远离的距离关系是
r0r′<r″-r0
所以两相邻粒子中心的平均距离为
变的情形。由此可见,当晶体温度升高,粒子热振动加剧,体积膨胀。
【固体的线膨胀】由于固体随温度的变化而变化,当温度变化不太大时,在某一方向长度的改变量称为“固体的线膨胀”。例如,一细金属棒受热而伸长。固体的任何线度,例如,长度、宽度、厚度或直径等,凡受温度影响而变化的,都称之为“线膨胀”。
【线膨胀系数】亦称线胀系数。固体物质的温度每改变1摄氏度时,其长度的变化和它在0℃时长度之比,叫做“线膨胀系数”。单位为1/开。符号为αl。其定义式是
即有
lt=l0(l+αlt)。
由于物质的不同,线膨胀系数亦不相同,其数值也与实际温度和确定长度l时所选定的参考温度有关,但由于固体的线膨胀系数变化不大,通常可忽略这种变化,而将α当作与温度无关的常数。
【固体的面膨胀】当固体的温度变化不大时,其表面积随温度的升高而增大,这一现象叫“固体的面膨胀”。遵循的规律为:
St=S0(1+αst)
式中αs为面膨胀系数,单位是1/开,其量值为αs≈2ατ。
【固体的体膨胀】当固体的温度变化不大时,其体积随温度的升高而增大,这一现象叫“固体的体膨胀”。
【体积膨胀系数】或称“体胀系数”。无论物质是哪种(固体、液体或气体)形态的变化,都称之为体膨胀。当物体温度改变1摄氏度时,其体积的变化和它在0℃时体积之比,叫做“体积膨胀系数”。符号用α表示。设在0℃时物质的体积为V0,在t℃时的体积为Vt,则体胀系数的定义式为
即有
Vt=V0(1+αt)。
由于固体或液体的膨胀系数很小,为计算方便起见,在温度不甚高时,可直接用下式计算,无需再求0℃时的体积V0
V2=V1[1+α(t2-t1)]。
式中V1是在t1℃时的体积,V2是在t2℃时的体积。这一式只适用于固体或液体,因为气体物质的膨胀系数值较大,不能运用此式。
【液体热膨胀】液体是流体,因而只有一定的体积,而没有一定的形状。它的体膨胀遵循Vt=V0(1+βt)的规律,β是液体的体膨胀系数。其膨胀系数,一般情况是比固体大得多。
【气体的热膨胀】气体热膨胀的规律较复杂,当一定质量气体的体积,受温度影响上升变化时,它的压强也可能发生变化。若保持压强不变,则一定质量的气体,必然遵循着Vt=V0(1+γt)的规律,式中的γ是气体的体膨胀系数。盖·吕萨克定律,反映了气体体积随温度变化的规律。这一定律也可表述为:一定质量的气体,在压强不变的情况下,温度每升高(或降低)1℃,增加(或减小)的体积等于它在0℃时体
【反常膨胀】一般物质由于温度影响,其体积为热胀冷缩。但也有少数热缩冷胀的物质,如水、锑、铋、液态铁等,在某种条件下恰好与上面的情况相反。实验证明,对0℃的水加热到4℃时,其体积不但不增大,反而缩小。当水的温度高于4℃时,它的体积才会随着温度的升高而膨胀。因此,水在4℃时的体积最小,密度最大。湖泊里水的表面,当冬季气温下降时,若水温在4℃以上时,上层的水冷却,体积缩小,密度变大,于是下沉到底部,而下层的暖水就升到上层来。这样,上层的冷水跟下层的暖水不断地交换位置,整个的水温逐渐降低。这种热的对流现象只能进行到所有水的温度都达到4℃时为止。当水温降到4℃以下时,上层的水反而膨胀,密度减小,于是冷水层停留在上面继续冷却,一直到温度下降到0℃时,上面的冷水层结成了冰为止。以上阶段热的交换主要形式是对流。当冰封水面之后,水的冷却就完全依靠水的热传导方式来进行热传递。由于水的导热性能很差。因此湖底的水温仍保持在4℃左右。这种水的反常膨胀特性,保证了水中的动植物,能在寒冷季节内生存下来。这里还应注意到,冰在冷却时与一般物质相同,也是缩小的。受热则膨胀,只有在0℃到4℃的范围内的水才显示出反常膨胀的现象来。
【复合金属板】由两种不同金属(铜片和铁片)组成长度相同的物体,将它们铆钉在一起,在室温情况下是直的。当温度升高后,它们将发生弯曲。在这种情况下,虽然两种金属温度上升是相同的,但由于它们的线膨胀系数不同,所以两种金属伸长的量不相等,因而发生弯曲。这种金属板称为复合金属板。
利用双金属片的特性,可制成金属温度计,或自动调节温度电路的触点。日光灯电路中的起辉器就是用它来作起动开关的。
【伸缩管】在温度变化较大的管道上连接伸缩管或波纹管,是一种保护措施。由于固体在热胀冷缩时,长度的变化量虽然不大,但对妨碍它发生形变的物体,却有巨大的作用力。例如,截面积为1厘米2、长度为1米的钢条,当温度升高40℃时,伸长只有约0.0005米。如果不让它伸长,它就会对限制它的物体产生104牛顿的作用力。横截面积越大,作用力也越大。为此在工程技术上对于热膨胀所产生的力,应预先考虑,采取必要的措施。例如,钢制桥梁必须把一端架置在活动支座上,使桥梁能自由伸缩。又如在铺设铁轨时,也都是分段留有膨胀余地。
【金属温度计】利用一种呈弧形的双金属片在温度变化的影响下,双金属片带动指针偏转,用以指示或自动记录温度的变化。
【温度调节器】它是用来保持恒温的装置。如图2-7所示的是一种温度调节器的构造原理。弧形的双金属片C由于温度的改变促使其伸展或更加弯曲。在C的自由端固定一块金属板L,在C受热膨胀而伸展时,L与接触点相接触;当温度降低时,C将更加弯曲,L与K离开。若将L与K串接在电热器的QQ1中,当L与K相接触时,电路接通,电热器开始加热,使双金属片C的温度升高。当温度达到某一定值时,由于C更加弯曲,L离开K,电路断开,电热器停止加热。当温度再一次降低时,C又伸展使电路接通。这样就可以自动地保持恒定的温度。复合金属板的里、外层,用线胀系数大的材料。根据仪器构造的需要,可将膨胀系数大的重合板用在环内侧或环外侧。
【相对膨胀】置于容器中的液体,温度升高后,直接观察到的并不就是液体的真实膨胀。因为当温度升高时,固体容器的容积也要膨胀。因此所见到的膨胀,既有液体的膨胀也有固体的膨胀,这种膨胀是液体相对于容器的膨胀故称“相对膨胀”。
【分子的动能】分子作无规则运动所具有的动能叫做“分子的动能”。由于各个分子的运动速度一般说是不同的,因而分子的动能亦不相等,而它们动能的平均值,叫做“分子平均动能”。物体的温度是大量分子热运动剧烈程度的表征;分子热运动越剧烈,物体的温度就越高。也可以说分子的平均动能大,物体的温度就高;分子平均动能小,温度就低。从分子运动论的观点来看,温度是分子平均动能的标志。温度的升高与降低,标志分子平均动能的增大或减小。物体的动能是一种机械能,是力学中的量。它只跟物体的机械运动有关,而跟物体内部分子的无规则运动无关。分子的平均动能,是分子动能的平均值,它是热运动的能量。
【分子的势能】由于分子间的相互作用而具有的势能,叫做“分子的势能”。地面上的物体,由于它跟地球相互作用而具有势能,拉长或压缩弹簧,反抗弹力做功,使弹簧各部分之间的相对位置发生变化,增加了弹簧的势能。一切相互作用的物体都具有由它们的相对位置或物体内部各部分之间的相对位置所决定的势能。若物体间的相互作用力是引力,那么,当它们的距离增大时,必须反抗引力做功,使物体的势能增加;在距离缩小时,引力做功,势能减小。如果物体之间的相互作用力是斥力,在距离增大时,物体的势能减少;距离缩小,物体的势能增加。分子之间也存在相互作用力,并且随着距离的不同,有时表现为引力,有时表现为斥力。因此,分子也具有由它们的相对位置所决定的势能。
【分子平均动能】见“分子的动能”。
【内能】内能是指由物质系统内部状态所决定的能量。从分子运动论的观点看,热力学系统的内能,包括组成物质的所有分子热运动的动能、分子与分子间相互作用的势能的总和,以及分子中原子、电子运动的能量和原子核内的能量等等。当有电磁场和系统相互作用时,还应包括相应的电磁形式的能。内能是热力学系统的状态函数,完全由系统的初、终状态所决定的物理量。当状态一定时,系统的内能也一定。当系统从一个状态转变到另一个状态时,不论这种转变通过什么过程实现,只要系统的初、终状态不变,在各种不同的绝热过程中,采用各不相同的做功形式,所测得功的数值都相同,而与转变过程无关。对于均匀系统而言,若没有外力场的作用,内能可以表示为温度T和体积V的函数,即
U=U(T,V)
当温度和体积分别增加dT和dV时,内能的增加量可如下表示
式中CV和CP分别为系统的定容热容量和定压热容量。
对于理想气体系统而言,由于不存在分子间的相互作用,系统的内能只是所有分子热运动动能的总和。而分子热运动动能只是温度的函数,所以理想气体的内能也只是温度的函数,即
U=U(T)
当温度增加dT时,内能的增量可如下式表示:
dU=CVdT
式中CV为理想气体系统的定容热容量。
物体内能的大小跟它的质量有关。质量越大,即分子数量越多,它的内能就越大。还跟物体的温度和物体的聚集态(固态、液态和气态)以及物体存在的状态(整块、碎块或粉末)有关。其原因是物体温度越高,分子运动越快,分子动能越大;分子间距离越大,分子的势能就越大。对气体来说,它的内能基本上只有分子的动能。因气体分子间的距离已经变得很大,它们之间相互作用力实际上已不再发生作用,所以气体分子的势能可以忽略。物体的内能跟整个物体的机械能含义不同,只要是物体的温度、体积、形状、物态不变,尽管它的机械能在变,它的内能仍保持不变。
物体的温度升高,物体内能增加。因为分子无规则运动加快,分子的动能增加;还因为一般物体受热体积膨胀,分子间距离增大,分子的势能增加。相反,物体的温度降低时,物体的内能就减少。整块物体破成碎块或粉末,分子的势能就要增加。物态变化也伴随物体内能的变化。在熔解、蒸发、沸腾等过程中,物体的内能增加。相反,在凝固和液化等过程中,物体的内能减少。改变物体内能的方式是做功和热传递两种方式。
【物体的状态】物体的状态是指它所处的情况。物体的状态由一组物理量来确定,例如,物体的机械运动状态是指它的位置和速度;一定质量气体的热学状态由它的温度、压强、体积这三个物理量中的任意两个量来确定;物体的状态也指它的聚集态(固态、液态、气态),是整块的还是分散的。
【分散】把整块物体分裂成粉末或碎片的现象,叫做物体的“分散”。它是物体状态变化中一种很重要的概念。例如,喷雾器将水喷出;在黑板上用粉笔写字;用铅笔在纸上绘图;磨粉机磨面粉;车刀切削金属等都是分散的事例。物体在分散时,分子间的平均距离有了增加,这就需要克服分子间的引力做功。所以分子相互作用的势能就要增加。
【物体内能的变化】改变物体的内能有两种方式:一种叫做作功,另一种叫做热传递。热传递只能发生在温度不同的两个物体之间,或一个物体的温度不同的两个部分间。它是温度不同的两物体间能量转移的过程,即能量从高温物体转移到低温物体。热传递的结果使两个物体的温度趋于均衡。在热传递的过程中转移的能量,称之为热量。改变系统内能的另一条途径是做功。即用机构的或电的办法来对系统作功以达到改变其内能的目的。对物体传递热量或作功,不但同样可以改变物体的内能,并且在量的方面也具有一定的关系(热功当量)。
【热量】由于温度差,在热传递过程中,物体(系统)吸收或放出能量的多少,叫做“热量”。它与作功一样,都是系统能量传递的一种形式,并可作为系统能量变化的量度。热量是热学中最重要的概念之一,它是量度系统内能变化的物理量。在热传递的过程中,实质上是能量转移的过程,而热量就是能量转换的一种量度。热传递的条件是系统间必须有温度差,参加热交换的不同温度的物体(或系统)之间,热量总是由高温物体(或系统)向低温物体(或系统)传递的,直到两个物体的温度相同,达到热平衡为止。即使在等温过程中,物体间温度也不断出现微小的差别,通过热量传递而不断达到新的平衡。对于参加热传递的任何一个系统,只有在和其他系统之间有温差,才能获得或失去能量。另外,对系统本身来说,它获得或失去的这部分能量(即热量),并不一定全部用来升降自身的温度,也可用来使自身发生物态的变化。若用分子运动论的观点来看,实际就是将系统分子无规则的热运动转移到另一系统,使该系统的分子热运动的动能或分子间相互作用的势能发生变化。
热量原是热质说中引入的一个物理量。热质说把热量定义为热质之量,即热质的多少。热质说认为物体温度的高低由所含热量(热质)的多少来决定,而且传递的过程是热质移动的过程。现在热质说已被废弃,却保留了“热量”一词,但两者的含义根本不相同。我们说到热量由一个物体转移到另一物体时,意思是说,能量由热传递的方式,从一个物体转移到了另一个物体,其能量转移的数量(不是代表每个物体内能的多少)就用热量来表示。可见,热量只是用来衡量在热传递过程中物体内能增减的多少,并不是用来表示物体内能的多少。说某系统或某物体包含了多少热量,是没有意义的。在国际单位制中,热量的单位是焦耳(卡或千卡已废弃不用)。
在对热量的理解基础上,有必要弄清与其他概念的关系:首先应明确,尽管热量和温度有一定的联系,但它们是完全不同的两个物理量。因为热量是系统内能变化的量度,而温度则是系统内部大量分子作无规则热运动的激烈程度的标志。尽管热传递必须在两系统间有温度差时进行,但传递的是能量,不是热质,更不是温度。热传递不仅可使系统温度发生变化,还可使物态发生变化。在物态变化过程中,传递给系统的热量不一定使系统温度变化(如萘的熔解过程)。因此说:“系统吸收热量多,温度变化不一定大”。“系统的温度高,放出的热量也不一定多”。因为放出的热量,不但和温度的变化值有关,还和热容量等因素有关。其次热量和功有着本质的区别。功是在没有热传递过程中,系统能量变化的量度。而热是在没有作功过程中,系统能量变化的量度。热量和功,都是系统内能变化的量度,都是与过程有关的物理量。热量可以通过系统转化为功,功也可以通过系统转化为热,一定量的热量和一定量的功是相当的。用作功来改变系统的内能,是系统分子的有规则运动转化为另一系统的分子的无规则运动的过程,也就是机械能或其他能和内能之间的转化过程。用传热来改变系统的内能,是通过分子间的碰撞以及热辐射来完成的。它将分子的无规则运动,从一个系统转移到另一个系统。这种转移也就是系统间的内能转换的过程。因此功和热量既有内在的联系,又有本质的区别。最后还应明确热量和内能的关系:内能是由系统的状态决定的。状态确定,系统的内能也随之确定。通过作功和热传递这两种过程可使系统的内能发生变化。热量是热传递过程中的特征物理量。和功一样,热量只是反映物体在状态变化过程中所迁移的能量,是用来衡量物体内能变化的。有过程,才有变化,就某一状态而言,只有“内能”,根本不存在什么“功”和“热量”。因此也不能说一个系统中含有多少热量或多少功。
【卡】卡路里的简称。是计算热量曾用的一种单位。代号为cal。使1克纯水温度升高1℃所需要的热量叫做1卡路里,简称1卡,有时亦称1小卡。由于水的比热随温度不同而略有差异,精密的量度发现,把1克纯水从1℃加热到2℃时所需要的热量,比把它从31℃加热到32℃时所需要的热量大约多1%,所以在精密测定中,是把1克纯水从14.5℃加热到15.5℃所需要的热量规定为1卡。通常不加区别而以1卡/(克·度)为水的比热。应用上为方便起见,常以1千卡作为热量的单位,称为“千卡”或“大卡”。原来的“卡”是根据“热量是‘热质’的量”这一观点来定的,随着科学的发展,认识到热量是一种能量变化的量度。热量的单位完全应该采用能量的单位。但由于卡这一单位已经长期沿用,特别是在生物学和食品工业中,已习惯用卡来表示,故这一单位保留下来,但现在卡的意义跟原来的已经完全不同了。在国际单位制和我国法定计量单位中热量的单位是焦耳,1卡约等于4.184焦耳。即1焦耳等于0.24卡。
【大卡】即千卡,为卡的1千倍。它是热量曾用的单位。参见“卡”。
【热能】是能量的一种形式,依物质的分子运动学说,热能是物质中分子或原子无规则热运动的动能。任何一种运动形式都有与其相对应的能量。例如,机械运动的能量是机械能。物体内部所有分子的各种动能以及分子间势能的总和叫做内能。内能包括两部分:一部分是与分子热运动相对应的各种分子运动的动能EK,另一部分是由分子之间的相互作用力引起的分子势能EP。所有分子的各种形式的动能和势能的总和,叫物体的内能,用E表示,即E=EK+EP。由上可见,热能只是内能的一部分。在某些技术部门中,曾把热能和内能混淆,教学中宜将内能和热能区别开来。
【热功当量】热量以卡为单位时与功的单位之间的数量关系,相当于单位热量的功的数量,叫做热功当量。焦耳首先用实验确定了这种关系,将这种关系表示为
1卡(热化学卡)=4.1840焦耳
即1千卡热量同427千克米的功相当,即热功当量J=427千克米/千卡=4.1840焦耳/卡。
从下述两点说明功和热是相当量,而不是相等。其一是在系统的内能发生同样的变化中,既可以通过作功来完成,也可以通过传递热量来完成。两者之间只是在作用于系统这一效果上是等效的,决不能等同起来;其二是功和热之间的转换只是通过系统内能的变化才能完成。脱离系统去谈功和热之间的直接转换是不恰当的。尽管在宏观上可能反映出系统的内能没有发生变化,也不能得出热可以变功或功可以变热这样简单的结论。如果在转换过程中,外界供给系统热量,使系统全部用来对外作功,实际是外界供给系统热量,使系统的内能增加,同时系统对外作功,消耗了从外界获得的能量。
功热当量是热功当量的倒数,它等于0.24卡/焦耳。
【平衡状态(热学)】对于一定的热力学系统,当外界对它既不传热也不作功的条件下,无论该系统的初始状态如何,经过一定时间以后,必将达到其宏观物理性质不随时间变化的状态,这种状态称为平衡状态,简称平衡态。系统处于平衡态时,具有确定的状态参量。平衡态是热力学中重要的基本概念之一。这是在一定条件下对实际情况的概括和抽象,是一种理想的状态。事实上,自然界中并不存在完全不受外界影响,并且宏观性质又绝对不变的系统。只有当人们在研究有关热学问题时,为使问题简化,常把实际的状态,近似地当作平衡状态处理。
【热力学系统】热力学研究的对象是由大量粒子所组成的整体,这一宏观客体称热力学系统,简称系统。而与此系统相互作用的周围环境,称系统的外界。从系统与外界的关系来看,热力学系统有三种情况:其一是孤立系统,即热力学系统与外界没有任何相互作用的联系;其二是封闭系统,即与外界有能量交换的系统,但没有物质的交换;其三称为开放系统,与外界既有物质的交换,又有能量的交换。
【热力学过程】简称过程,即热力学系统从一个状态向另一个状态的过渡,或者说热力学状态随时间的变化。例如,在物态变化中,汽化是物质由液态转变为气态的过程,是凝结的相反过程,都是热力学的过程。按过程所经历中间状态的性质,可把热力学过程分为准静态过程和非静态过程。若在准静态过程中系统内部没有摩擦,则系统经历的过程具有可逆性,也就是说系统从某一初态经过一系列的中间状态到达末态,而后可按相反的次序经历中间各状态,由末态回到初态,因而这类过程又称为可逆过程。
【水当量】在热的测量中,一般将量热器的热容量称之为“水当量”。
【量热器】是一种测量热量等的仪器,亦称“卡计”。它是由白瓷外筒和铜(或铝质)小筒组成,小筒的底部用不传热的小支架支起来,见图2-8所示。两筒间是不易传热的空气,外筒上的盖子,一般用木料制成,其传热效率低。盖上有两个小孔,一孔插温度计,另一孔插搅动器,搅动器用来使投入水中的待测物(己知其质量和温度)跟水温迅速交换,而温度计则
用来测小筒内已知质量水的初温及混合后的温度。两筒间不接触防止热的传递。这种量热器,可用来测定热量、比热、潜热(熔解热、汽化热、升华热等)、化学反应热,以及火炉及酒精灯火焰的温度等。
【焦耳实验】它是1850年焦耳首先测定热功当量的实验。盛在绝热容器内的水,由于砝码的下落带动桨叶旋转,而使水温升高。如果砝码下落所作的功为ΔW,使容器中质量为m的水升高温度为ΔT,那么与ΔW相当的热量ΔQ应为
ΔQ=CmΔT
式中C是水的比热,根据实验测得的ΔT,可将ΔQ计算出来;ΔW可以根据砝码的重力和下落的距离算出。根据实验所得数据,计算所得结果,这就是测热功当量的焦耳实验。
【燃料的燃烧值】1千克某种燃料完全燃烧放出的热量,叫做这种燃料的燃烧值。常用q表示,它的单位是焦耳/千克或焦耳/克。如果质量为m的燃料完全燃烧后所放出的热量为Q放,其定义式为
Q放=qm
燃料燃烧时放出的热量多少,不但与燃料的质量多少有关,还与燃料的种类及燃烧程度有关。燃料燃烧放热与高温物体通过热传递向低温物体放热有本质的区别。前者是化学变化而后者是物理变化。燃烧值是反映燃料通过燃烧这种化学变化放热的特性。为比较各种燃料发热的本领,以相同质量的不同燃料完全燃烧后所释放出的热量来对比。
【热容量】系统在某一过程中,温度升高(或降低)1℃所吸收(或放出)的热量叫做这个系统在该过程中的“热容量”。如果在一定的过程中,当温度升高ΔT时,系统从外界吸收的热量为ΔQ,那么在该过程中该系统的热容量为
热容量的单位是焦耳/开。系统的热容量与状态的转变过程有关。在提到系统或物质的热容量时,必须指明状态的转变过程。系统的热容量还与它所包含的物质的质量成正比,不同过程的热容量不同。
为计算简便,常用水当量的概念,如某系统的热容量与多少克水的热容量相等,即称该系统的水当量为多少克。所以任何系统的热容量在数值上就等于它的水当量。
通常规定,系统吸收的热量为正值,而释放的热量为负值,故在系统吸收热量引起温度升高时,热容量为正值。也有的系统,如饱和水蒸气,在温度升高时,释放热量,故其热容量为负值。
【比热容】即比热。是单位质量物质的热容量。单位质量的某种物质,在温度升高(或降低)1℃时所吸收(或放出)的热量,叫做这种物质的“比热容”。在国际单位制中,比热的单位是焦耳/(千克·开)(曾用的单位还有卡/(克·℃)、千卡/(千克·℃)等)在国际单位制中,能量、功、热量的单位统一用焦耳,因此比热容的单位应为J/(kg·K)。
比热容是反映物质的吸热(或放热)本领大小的物理量。它是物质的一种属性。任何物质都有自己的比热容,即使是同种物质,由于所处物态不同,比热容也不相同。例如,水的比热容是4.2×103J/(kg·K),而结成冰以后的比热容则为2.1×103J/(kg·K)。比热容是热学中一个重要概念。它涉及热量、温度、质量三个物理量间的变化即C=
压强和体积的变化,而有所不同。水的比热容,只有当温度从14.5℃上升到15.5℃时,它的比热容才等于4.2×103J/(kg·K),在其他温度间隔,水的比热容不一定等于4.2×103J/(kg·K)但由于差别很小,可不加考虑。其他物质在温度改变时,比热容也有很小的变化。比热容表中所给的数值都是这些物质的平均值。气体的比热容和气体的热膨胀有密切关系,在体积恒定与压强恒定时不同,故有定容比热容和定压比热容两个概念。但对固体和液体,二者差别很小,一般就不再加以区分。
【定容比热容】在物体体积不变的情况下,单位质量的某种物质温度升高1℃所需吸收的热量,叫做该种物质的“定容比热容”。
【定压比热容】在压强不变的情况下,单位质量的某种物质温度升高1℃所需吸收的热量,叫做该种物质的“定压比热容”。因为气体在压强不变的条件下,当温度升高时,气体一定要膨胀而对外作功,除升温所需热量外,还需要一部分热量来补偿气体对外所作的功,因此,气体的定压比热容比定容比热容要大些。由于固体和液体在没有物态变化的情况下,外界供给的热量是用来改变温度的,其本身体积变化不大,所以固体与液体的定压比热容和定容比热容的差别也不太大。因此也就不需要区别了。
【热平衡方程】(热交换定律)温度不同的两个或几个系统之间发生热量的传递,直到系统的温度相等。在热量交换过程中,遵从能的转化和守恒定律。从高温物体向低温物体传递的热量,实际上就是内能的转移,高温物体内能的减少量就等于低温物体内能的增加量。其平衡方程式为
Q放=Q吸
此方程只适用于绝热系统内的热交换过程,即无热量的损失;在交换过程中无热和功转变问题;而且在初、末状态都必须达到平衡态。系统放热,一般是由于温度降低、凝固、液化及燃料燃烧等过程。而吸热则是由于温度升高,溶解及汽化过程而引起的。
【等温过程】热力学系统在恒定温度下发生的各种物理或化学过程。在整个等温过程中,系统与其外界处于热平衡状态。例如,与恒温箱接触的一个气筒,可用一活塞对它缓慢地压缩,所做的功表现为流进容器内使气体的温度保持不变的能量。蓄电池在室温下缓慢充电和放电,都是近似的等温过程。对一定质量理想气体等温可逆过程的特征是气体压强P和体积V的乘积不变,PV=恒量。理想气体的内能仅仅是温度的函数,所以过程中内能不变。
【等压过程】又称“定压过程”。热力学系统在状态发生(物理或化学)变化过程中,其物质系统的压强始终保持恒定,其特点是P=恒量。等压过程能量转化特点是系统吸收的热量等于系统内能的增量和系统对外所做功之和;等于系统态函数焓的变化。
等压过程在工程热力学中,如水蒸气在锅炉过热器内受热的过程,常常用工质的焓的数值所编成专门的图表,可直接根据状态从图表中查出焓值,用来计算工质在定压下吸收的热量。又如在大气压下,气缸中的气体受热缓慢膨胀;等压下的化学反应,由QP=ΔH知其反应热等于生成物和反应物的焓差,可用来计算反应热。对一定质量理想气体等压过程的特征是它的体积在过程中与绝对温度成正比。
【等容过程】又称“定容过程”。物质系统的体积保持不变的情况下所发生各种物理或化学过程,其特点是体积V=恒量。由于在等容过程中系统对外界不作功,所以,当系统的温度升高时,将从外界吸收热量Q,并全部转变为自身内能的增加。对一定质量理想气体等容过程的特征是压强和绝对温度按正比的变化。
【绝热过程】热力学系统与外界无热交换的过程,即不吸收热量也不放出热量的过程叫“绝热过程”。由良好的绝热材料隔绝的系统中进行的过程,或由于过程进行得过速来不及和外界有显著热交换的过程,都可近似地看作绝热过程。例如,声波在空中的传播,蒸气在汽轮机内膨胀作功的过程,均可当作绝热过程处理。一个系统作绝热变化,只是对外没有热量交换,并不是这系统本身温度不变。例如,对气体作绝热压缩,温度升高,当气体作绝热膨胀时,温度则常是降低。绝热过程中系统与外界无热交换Q=0。根据热力学第一定律,绝热过程中能量转化的特点是系统内能的变化等于外界对系统所作的功,ΔU=A。当A>0,外界对系统做功,则ΔU>0,系统内能增加。反之,当A<0时,系统对外界做功,系统内能减少。
【相变】(物态变化)不同相之间的相互转变,称为“相变”或称“物态变化”。自然界中存在的各种各样的物质,绝大多数都是以固、液、气三种聚集态存在着。为了描述物质的不同聚集态,而用“相”来表示物质的固、液、气三种形态的“相貌”。从广义上来说,所谓相,指的是物质系统中具有相同物理性质的均匀物质部分,它和其他部分之间用一定的分界面隔离开来。例如,在由水和冰组成的系统中,冰是一个相,水是另一个相。α铁、β铁、γ铁和δ铁是铁晶体的四个相。不同相之间相互转变一般包括两类,即一级相变和二级相变。相变总是在一定的压强和一定的温度下发生的。相变是很普遍的物理过程,它广泛涉及到生产及科技工作。在物质形态的互相转换过程中必然要有热量的吸入或放出。物质三种状态的主要区别在于它们分子间的距离,分子间相互作用力的大小,和热运动的方式不同。因此在适当的条件下,物体能从一种状态转变为另一种状态。其转换过程是从量变到质变。例如,物质从固态转变为液态的过程中,固态物质不断吸收热量,温度逐渐升高,这是量变的过程;当温度升高到一定程度,即达到熔点时,再继续供给热量,固态就开始向液态转变,这时就发生了质的变化。虽然继续供热,但温度并不升高,而是固液并存,直至完全熔解。一般物质三态相互变化过程可见图2-9所示。
【熔解】物质由固相转变为液相的过程,叫做“熔解”。它是凝固的相反过程。晶体物质在一定压强和一定的温度下,就开始熔解。在熔解过程中,要吸收热量,这部分热量是熔解热。尽管晶体物质吸收熔解热而熔解,但其温度不变,直至全部晶体都变成液体时为止。晶体熔解时对应的温度,称为熔点。
在熔解过程中,吸收热量的多少,只能影响熔解的快慢,而不能影响熔解温度的高低。这说明晶体在熔解和凝固的过程中具有共同的特征——温度保持不变。晶体的液态和固态之间有着明显的界限。这是由于晶体的分子是按一定的规则排列成为空间点阵的。分子只能在平衡位置附近不停地振动,因此,它具有动能;同时,在空间点阵中,由于分子之间相互作用,它又同时具有势能。晶体在开始熔解之前,从热源获得的能量,主要是转变为分子的动能,因而使物质的温度升高。但在熔解开始时,热源传递给它的能量,是使分子的有规则的排列发生变化,分子之间的距离增大以及分子离开原来的平衡位置移动。这样加热的能量就用来克服分子之间的引力做功,使分子结构涣散而呈现液态。也就是说,在破坏晶体空间点阵的过程中,热源传入的能量主要转变为分子之间的势能,分子动能的变化很小,因此,物质的温度也就没有显著的改变。所以熔解过程是在一定温度下进行的。
非晶体在熔解过程中,随温度的升高而逐渐软化,最后全部变为液体,所以熔解过程不是与某一确定温度相对应,而是与某个温度范围相对应。因为非晶体物质的分子结构跟液体相似,它的分子排列是混乱而没有规则的,即使由于它的粘滞性很大,能够保持一定的形状,但是实际上它并不具有空间点阵的结构。热源传递给它的能量,主要是转变为分子的动能。所以在任何情况下,只要有能量输入,它的温度就要升高。因此它没有一定熔解温度,并且在熔解过程中,温度是不断上升的。
固态在熔解时,物质的物理性质要发生显著变化,其中最主要的是饱和蒸汽压、电阻率以及熔解气体能力的变化,特别是体积的变化。例如,冰总是浮在水面上,严冬季节,盛满水的瓶子因冻结而胀裂。固体石蜡放入熔解的液体石蜡里,会下沉到底部。从而得出固态熔解成液态,或液态凝固成固态时,体积和密度通常是要发生变化的。大多数物质如石蜡、铜、锌、锡等,在溶解时体积变大,在凝固时体积要缩小。这是因为在晶体内分子有规则排列时所占的体积要比在液体内分子杂乱无章排列时所占的体积小些。但也有少数物质例外,例如,水、铋和锑等,它们在凝固时体积反而变大,熔解时体积反而缩小。利用这一特点,在铸铅字时,常常要在铅中加入一些铋、锑等金属,使其在凝固时膨胀,字迹清晰。
【熔点】是晶体物质熔解时的温度。也就是该物质的固相和液相可以平衡共存的温度。各种晶体中粒子之间相互作用力不同,因而熔点各不相同。同一种晶体,熔点与压强有关,一般取在1大气压下物质的熔点为正常熔点。在一定压强下,晶体物质的熔点和凝固点都相同。熔解时体积膨胀的物质,在压强增加时熔点就要升高。因为压强的增加使物体体积被压缩,因此,在这种情况下,就要阻碍物体熔解时体积的胀大。为使物质熔解后体积能够胀大,则必须继续加热,使物质的分子振动更激烈,也就是使物体的温度升得更高。例如,水银的熔点在1大气压下为-39℃,而在15000大气压下为10℃。这类物质在压强减少时熔点就下降。熔解时体积缩小的物质,在压强增加时熔点就要降低。在这种情况下,压强的增加会促使物质体积的缩小,因此温度不必升高到原来的熔点就能够熔解。例如,冰在1大气压下的熔点是0℃,而当外界压强每增加1个大气压,它的熔点就要下降0.0075℃。熔点随压强而改变的关系可由克劳修斯—克拉珀方程给出。当液体中含有溶质(杂质)时,就不易凝固,因而熔点要降低。例如水中含有蔗糖。凡水中含有机物越多,它的熔点也降低得越快。如在冰上撒盐,冰就容易熔解。又如锡在232℃熔解,铅在327℃熔解,而其合金,在170℃左右即可熔解。但也出现另一种情况,即非常纯净而不含杂质的液体,在冷却到熔点以下若干度时,仍保持液体状态而不凝固。此即液体的过度冷却。
【熔解热】单位质量晶体物质,在熔点由固相转变为液相所吸收的相变潜热。晶体的熔解是粒子由规则排列转向不规则排列的过程。这些热量就将用来反抗分子引力做功,增加分子的势能,也就是说,这时物质所吸收的热量是破坏点阵结构所需的能量,使分子的运动状态起质的变化——从固态的分子热运动转变成液态的分子热运动,同时改变了物质的状态。所以晶体不仅有固定的熔点,而且还需要吸收一定数量的热量来实现它的熔解。由于物质不同其晶体空间点阵结构不同,尽管各种不同物质的质量相同,但在熔解时所吸收的热量却不相同。为表示晶体物质的这一特性,而引入熔解热。它表示单位质量的某种固态物质在熔点时完全熔解成同温度的液态物质所需要的热量;该物质在凝固时,在凝固点,也等于单位质量的同种液态物质,转变为晶体所放出的热量。
如果用λ表示物质的熔解热,m表示物质的质量,Q表示熔解时所需要吸收的热量,则
Q=λm
熔解热的单位是焦耳/克或焦耳/千克。测量熔点较高的物体的熔解热是比较困难的,但是对于熔点较低的物体,就可以用量热器来测定。
【凝固热】液态晶体物质在凝固过程中,要释放出热量,这部分热量就是“凝固热”(即熔解热)。见“熔解热”。
【凝固】物质从液相变为固相的过程,称为“凝固”。它是熔解的相反过程。在一定压强下,液态的晶体物质,其温度略微低于熔点时,微粒便将规则地排列成为稳定的结构。开始是少数微粒按一定的规律排列起来,形成所谓的晶核,而后围绕这些晶核成长为一个个晶粒。因此,凝固过程就是产生晶核和晶核生长的过程,而且这两种过程是同时进行的。凝固时的温度就是凝固点,不同的晶体其凝固点亦不相同。液态晶体物质在凝固过程中放出热量(称为凝固热,其数值等于熔解热),在凝固过程中其温度保持不变,直至液体全部变为晶体为止。非晶体的液态物质,在凝固过程中,温度降低逐渐失去流动性,最后变为固体。在凝固过程它没有一定的凝固点,只是与某个温度范围相对应。
【凝固点】是晶体物质凝固时的温度,不同晶体具有不同的凝固点。在一定压强下,任何晶体的凝固点,与其熔点相同。同一种晶体,凝固点与压强有关。凝固时体积膨胀的晶体,凝固点随压强的增大而降低;凝固时体积缩小的晶体,凝固点随压强的增大而升高。在凝固过程中,液体转变为固体,同时放出热量,所以物质的温度高于熔点时将处于液态;低于熔点时,就处于固态。非晶体物质则无凝固点。
【结晶】物质从液态或气态形成晶体的过程。当温度降低时,微粒将有规则地排列起来,开始时是少数微粒按一定的规律排列而形成晶核,然后围绕这些晶核成长为一个个的小晶粒。因此,凝固过程实质就是产生晶核和晶核成长的过程,这两种过程是同时产生的而且又同时进行着,产生晶核是指在液体内部产生的一些晶核。这些晶核可以由液体中本身原子自发地聚集起来形成的;也可以是由外来杂质的质点为基础而非自发形成的;也可以是人为加入一小块单晶体作为晶核。晶核生长指的是围绕着晶核的原子继续按一定规律排列在上面,使晶体点阵得以发展。在凝固完成约将过半时,生长着的晶粒互相抵触,朝有液体存在的方向生长,最终凝成了多晶体。
【过冷】温度降低超过了应该发生相变的温度但还未发生相变的现象,叫作“过冷”。在过冷蒸气因缺乏凝结核心尚未形成液滴的情形下,若引入高能粒子而使气体离子化,这些离子就会成为凝结液滴的核心,生成一连串的小液滴。在严冬,空气中的小雾珠在冷到—30℃时仍未冻结,由于飞机喷出大量烟气,空气也受到了振动,而使小雾珠结冰,附着在机翼上,极易造成事故。在加压情况下,纯净无杂质的液体,冷到凝固点以下,仍能保持液态。液体分子失去能量,但不会自发地构成固体的有规则的几何排列。若加入一小粒晶体作为形成晶体的晶核,液体就会凝固。
【冰点】是水的凝固点。在一大气压下,含饱和空气的纯水和冰可以平衡共存的温度,叫作“冰点”。冰点与压强有关,压强增大,冰点则相应降低。1954年以前,以汽点和冰点作为温度计分度的两个固定点。以冰点作为摄氏温标的0℃,后因冰点准确值难以测定,故在1954年将此标准废弃。现已改用水的三相点作为温度计分度的标准。
【复冰现象】为了表明冰的熔点随压强的增大而降低这一现象,通过实验与观察可以证实。例如,将一根钢丝放在一大块冰上,在钢丝的两端各悬挂一质量相等的大砝码。在钢丝下面的冰受到钢丝较大的压强,而变成液态的水,熔解的水处于钢丝的上面,由于这一部分的压强减少,又由于钢丝下面的冰在熔解过程吸收它的热量,于是这部分已被熔成的水,又结成为冰。结果是钢丝穿过冰块,而冰块并没有被分裂为两块。如果两砝码的质量增加。则熔解的速度更快些。这种现象称为复冰现象。
【熔化】见“熔解”条。
【潜热】物质发生相变(物态变化),在温度不发生变化时吸收或放出的热量叫作“潜热”。物质由低能状态转变为高能状态时吸收潜热,反之则放出潜热。例如,液体沸腾时吸收的潜热一部分用来克服分子间的引力,另一部分用来在膨胀过程中反抗大气压强做功。熔解热、汽化热、升华热都是潜热。潜热的量值常常用每单位质量的物质或用每摩尔物质在相变时所吸收或放出的热量来表示。
在一级相变中,吸收或释放热量,伴随体积的变化,但系统的温度不变。所吸收或放出的热量称为“相变潜热”。相变潜热与发生相变的温度有关,单位质量的某种物质,在一定温度下的相变潜热是一定值。若用U1和U2分别表示1相和2相单位质量的内能,用V1和V2分别表示1相和2相单位质量的体积,于是单位质量的物质由1相转变为2相时所吸收的相变潜热可用下式表示
l=(U2-U1)+P(V2-V1)=h2-h1
式中P是作用于系统的外部压强,h1和h2分别为1相和2相单位质量的焓。上式相变潜热公式表明,相变潜热l包括内潜热(U2-U1)和外潜热[P(V2-V1)]两部分。
【转变热】或叫潜热。见“潜热”条。
【汽化】是物质由液相转变为气相的过程。汽化有两种形式,即蒸发和沸腾。液体汽化时需要吸收热量,这部分热量称为汽化热,这是相变潜热之一。凝结是汽化的相反过程。
【汽化热】单位质量的某种物质在温度保持不变的情况下,由液相转变为气相时所吸收的相变潜热,也等于同种物质的单位质量在相同条件下由气相转变为液相所释放的相变潜热。不同的液体汽化热不同。同种液体在不同的温度时其汽化热亦不同。当温度升高时其汽化热减小。这是由于温度升高,液态与气态间的差别逐渐减少的缘故。例如,1摩尔的水,在50℃汽化,汽化热为42780焦耳,而在100℃汽化,汽化热为40680焦耳。1摩尔物质的汽化热称为摩尔汽化热。在国际单位制中,汽化热的单位是焦耳/千克(曾用的还有卡/克;千卡/千克)。
【蒸发】是发生在液体表面的汽化现象。它是液体汽化形式之一,而且在任何温度下都可以蒸发。从微观上看,蒸发就是液体分子从液面离去的过程。由于液体中的分子都在不停地作无规则运动,它们的平均动能的大小是跟液体本身的温度相适应的。由于分子的无规则运动和相互碰撞,在任何时刻总有一些分子具有比平均动能还大的动能。这些具有足够大动能的分子,如处于液面附近,其动能大于飞出时克服液体内分子间的引力所需的功时,这些分子就能脱离液面而向外飞出,变成这种液体的汽,这就是蒸发现象。飞出去的分子在和其他分子碰撞后,有可能再回到液面上或进入液体内部。如果飞出的分子多于飞回的,液体就在蒸发。在蒸发过程中,比平均动能大的分子飞出液面,而留存液体内部的分子所具有的平均动能变小了。所以在蒸发过程中,如外界不给液体补充能量,液体的温度就会下降。
影响蒸发的主要因素是:其一是与温度高低有关。温度越高,蒸发越快。无论在什么温度,液体中总有一些速度很大的分子能够飞出液面而成为汽分子,因此液体在任何温度下都能蒸发。如果液体的温度升高,分子的平均动能增大,从液面飞出去的分子数量就会增多,所以液体的温度越高,蒸发得就越快;其二是与液面面积大小有关。如果液体表面面积增大,处于液体表面附近的分子数目增加。因而在相同的时间里,从液面飞出的分子数就增多,所以液面面积增大,蒸发就加快;其三是与空气流动有关。当飞入空气里的汽分子和空气分子或其他汽分子发生碰撞时,有可能被碰回到液体中来。如果液面空气流动快,通风好,分子重新返回液体的机会越小,蒸发就越快。
其他条件相同的不同液体,蒸发快慢亦不相同。这是由于液体分子之间内聚力大小不同而造成的。例如,水银分子之间的内聚力很大,只有极少数动能足够大的分子才能从液面逸出,这种液体蒸发就极慢。而另一些液体如乙醚,分子之间的内聚力很小,能够逸出液面的分子数量较多,所以蒸发得就快。此外液体蒸发不仅吸热还有使周围物体冷却的作用。当液体蒸发时,从液体里跑出来的分子,要克服液体表面层的分子对它们的引力而做功。这些分子能做功,是因为它们具有足够大的动能。速度大的分子飞出去,而留下的分子的平均动能就要变小,因此它的温度必然要降低。这时,它就要通过热传递方式从周围物体中吸取热量,于是使周围的物体冷却。
【沸腾】在一定压强下,被加热的液体温度升高到某一程度时,液体不仅表面汽化,内部也同时产生剧烈的汽化,这种现象叫“沸腾”。沸腾只能在某一特定温度(即沸点)时发生。在沸腾过程中,液体虽然不断地吸收热量,但温度保持不变。从微观角度看沸腾的过程,大体可分两个阶段:沸腾前,烧杯里的水被加热,由于水中溶有空气,在杯底及壁上出现了小气泡,这些小气泡是杯内壁及底部所吸附的空气被分离出来形成的。小气泡的周围都是水,水就要向气泡里不断地蒸发。小气泡的体积小,里面的气很快就达到饱和状态,所以气泡里不仅有空气而且还有饱和的水汽。当水温继续升高时,小气泡里的饱和蒸汽压也就逐渐增大,于是它的体积也随之增大,在浮力作用下,汽泡脱离杯底及器壁而上升,同时,遗留在底面上的少量空气,又逐渐形成新的汽泡而上升。当汽泡上升到比较冷的水的上层时,由于泡内的饱和汽压小于外部的压强,汽泡又逐渐变小,以使泡内的饱和汽逐渐凝结成液体,最后只剩下空气和少量的水汽逃出液面。沸腾过程中,随着温度的升高,汽泡里的饱和汽压也越来越大。等到水的温度升高到一定的程度时,汽泡内的饱和汽压增大到等于外部压强时,整个水层处在同一温度下,于是汽泡在上升过程中就不会再发生水汽凝结和体积缩小的现象。由于不断吸热,汽泡周围的水迅速地向汽泡内蒸发,汽泡的体积在上升过程中就不断地增大。最后当汽泡升到水面时裂开,放出大量的蒸汽,此时杯内的水上下翻腾,形成沸腾现象。
由于液体的饱和汽压随温度的改变而改变。任何一种液体只有在一定的温度下才能沸腾,液体发生沸腾还必须是它的饱和汽压与外界压强相等。当外界压强增大时,液体的饱和汽压也相应的增大。因此液体的沸点又与外界压强有关,它随外部压强的增大而升高,随外部压强的减少而降低。一般高压锅内达2个大气压时,锅内温度可达到120℃。
从宏观角度看沸腾与蒸发有所区别。但从相变机构看,沸腾与蒸发只是汽化的不同形式,并没有本质的区别,沸腾时,汽化仍在气、液分界面上以蒸发的方式进行。沸腾过程中只不过是在液体内部向上涌起大量的小汽泡,升到液面破裂而将大量蒸汽分子送出液面,加快了蒸发的速度。因此,可将沸腾看作是液体内部的汽泡界面上蒸发的过程。这样就大大地增加了气、液之间的分界面。
【沸点】液体发生沸腾时的温度。当液体沸腾时,在其内部所形成的气泡中的饱和蒸汽压必须与外界施予的压强相等,气泡才有可能长大并上升,所以,沸点也就是液体的饱和蒸汽压等于外界压强的温度。液体的沸点跟外部压强有关。当液体所受的压强增大时,它的沸点升高;压强减小时,沸点降低。例如,蒸汽锅炉里的蒸汽压强,约有几十个大气压,锅炉里的水的沸点可在200℃以上。又如,在高山上煮饭,水易沸腾,但饭不易熟。这是由于大气压随地势的升高而降低,水的沸点也随高度的升高而逐渐下降。(在海拔1900米处,大气压约为79800帕(600毫米汞柱),水的沸点是93.5℃)。
在相同的大气压下,液体不同沸点亦不相同。这是因为饱和汽压和液体种类有关。在一定的温度下,各种液体和饱和汽压亦一定。例如,乙醚在20℃时饱和气压为5865.2帕(44厘米汞柱)低于大气压,温度稍有升高,使乙醚的饱和汽压与大气压强相等,将乙醚加热到35℃即可沸腾。液体中若含有杂质,则对液体的沸点亦有影响。液体中含有溶质后它的沸点要比纯净的液体高,这是由于存在溶质后,液体分子之间的引力增加了,液体不易汽化,饱和汽压也较小。要使饱和汽压与大气压相同,必须提高沸点。不同液体在同一外界压强下,沸点不同。沸点随压强而变化的关系可由克劳修斯—克拉珀龙方程得出。
【过热】液体被加热,当温度超过其沸点时仍不沸腾的现象叫“过热”。造成这种情形的原因是液体内缺少汽化核。因为液体中的空气泡是沸腾开始时的中心。周围的水要向气泡内蒸发使其体积增大而沸腾。若液体很纯洁无杂质和空气泡,或者经较长时间沸腾后,液体中的空气已经放尽,即使将水加热到100℃以上(其他液体温度高于沸点),也可能还不沸腾。如果在过热液体中投入一些附有空气的固体微粒如玻璃碎片等,液体也会立刻沸腾起来。
【暴沸】对过热液体继续加热,会骤然而剧烈地发生沸腾现象,这种现象称为“暴沸”,或叫作“崩沸”。过热是亚稳状态。由于过热液体内部的涨落现象,某些地方具有足够高的能量的分子,可以彼此推开而形成极小的气泡。当过热的液体温度远高于沸点时,小气泡内的饱和蒸气压就比外界的压强高,于是气泡迅速增长而膨胀,以至由于破裂引起工业容器的爆炸。液体之所以发生过热的原因是液体里缺乏形成气泡的核心。为避免容器的暴沸,可在容器中放含有空气的无釉陶块等。
【汽化核】液体内部剧烈汽化过程中,器壁上吸附的小气泡与其周围的液体间进行汽化的变化,这些小气泡起着汽化中心的作用,故称作“汽化核”。见“过热”及“暴沸”条。
【蒸气】由于液态物质的汽化,或固态物质升华而形成的气态物质,称为“蒸气”。蒸气是处于临界温度以下的气体。在保持温度不变的条件下,可通过压缩办法使蒸气变成液体(液化)或固体(凝华)。
【临界状态】亦称为临界点。是物质的气态和液态能够平衡共存的一个边缘状态。当物质的饱和气的密度与它的液态的密度相等时,这时物质所处的状态叫做“临界状态”。使物质处于临界状态,必须在一定的温度和压强下才能实现。物质处于临界状态时的压强叫做临界压强,处于临界状态时的温度称为临界温度。这部分物质所占有的容积,称为临界体积。临界温度、临界压强、临界体积统称为临界参量,对于不同的物质其临界参量的数值亦不相同。
【临界点】见“临界状态”。在临界等温线上相当于临界态的一点叫临界点。
【临界压强】临界点的压强称临界压强。见“临界状态”。
【临界温度】物质处于临界状态时的温度,称为“临界温度”。降温加压,是使气体液化的条件。但只加压,不一定能使气体液化,应视当时气体是否在临界温度以下。如果气体温度超过临界温度,无论怎样增大压强,气态物质也不会液化。例如,水蒸气的临界温度为374℃,远比常温要高,因此,平常水蒸气极易冷却成水。其他如乙醚、氨、二氧化碳等,它们的临界温度高于或接近室温,这样的物质在常温下很容易被压缩成液体。但也有一些临界温度很低的物质,如氧、空气、氢、氦等都是极不容易液化的气体。其中氦的临界温度为—268℃。要使这些气体液化,必须具备一定的低温技术和设备,使它们达到它们各自的临界温度以下,而后再用增大压强的方法使其液化。
【临界常数】亦称临界参量。它是临界温度、临界压强和临界体积的统称。不同物质的常数值不同。
【饱和蒸气】蒸气跟产生它的液体处于动态平衡时,这种蒸气称为“饱和蒸气”。液体蒸发时,既有分子从液体中逸出形成蒸气,同时也有由于分子间或与器壁间相碰撞等原因而使分子又回到液体中去。当从液面逸出的分子数等于回到液体中来的分子数时,液面上蒸气的密度就不再增加了,液体也不再减少,此时的蒸气叫“饱和气”。在蒸气达到饱和状态时,液体分子仍不断地逃逸,只不过是在单位时间内从液面逃逸的分子数等于飞回液体的分子数。蒸气和液体之间达到了动态平衡,此时的蒸气才叫做饱和气。例如,在盖紧了的酒瓶子里,酒面上的蒸气都是饱和气。
【饱和蒸气压】饱和蒸气的压强。它与液体的种类、体积及温度有关。每一种液体在一定的温度下有一定的饱和气压,而不同种类液体的饱和气压却不相同。由于液体分子的内聚力越小,飞出液面的分子数就越多。为了要使飞回液体的分子数和飞出液面的分子数相等,即达到动态平衡,液面上蒸气的密度就必须大些,但是,当液面上蒸气的密度大时,它的压强也就增大了。例如,乙醚的内聚力最小,所以它的饱和蒸气压就最大。
在一定的温度下,同一种液体的饱和气压和饱和气所占的体积没有关系。因为在一定的温度下,如果饱和气的体积增大,则蒸气的密度就要变小。因此,在单位时间飞回液面的分子数就要少于飞出液面的分子数。这样,蒸气将处于未饱和状态,于是,液体又要继续蒸发,直到蒸气处于饱和状态,即达到动态平衡为止。也就是说,蒸气的体积增大时,由于继续蒸发,蒸气的质量增加了,而蒸气的密度却保持不变。反之,在一定的温度下,减小饱和气的体积时,蒸气的密度变大,单位时间内飞回液面的分子数多于飞出液面的分子数。这样一部分蒸气就开始凝结,直到恢复了原有的饱和值时才停止。总之,在一定的温度下,增大或减小饱和气的体积时,它的质量也随着增加或减少,而它的密度却保持不变,所以它的饱和气压也就保持不变。
液体的饱和气压随温度的升高而变大。由于饱和气体的压强跟它单位体积内的蒸气分子个数以及蒸气分子速度有关,在液体温度升高的时候,液体分子的平均动能变大,每秒钟飞出液面的分子数增多,因而饱和蒸气的密度变大,单位体积空间内饱和蒸气的质量也增加了。同时,由于温度的升高,蒸气分子运动的平均速度也变大,这就使饱和蒸气每秒撞击液面或容器壁的次数增多,每次撞击的作用加强。正因为这个双重关系,而使饱和气压随温度的升高而变大。
饱和蒸气压的大小还与液面的形状密切有关。在凹液面情况下,分子逸出液面所需作的功比平液面时大,因要克服图2-10中画斜线部分液体分子的引力而做功。因此,单位时间内逸出凹液面的分子数比平液面时少,从而使饱和蒸气压比平液面时少。同理,分子逸出凸液面所需作的功,要比平液面时小,因不必克服如图2-11中画斜线部分液体分子的引力而作功,从而使凸液面上方饱和蒸气压比平液面时大。由于引力的有效作用距离很短(数量级为10-9m),所以弯曲液面与平液面上方饱和蒸气压之间的差别,只有当气液分界面的曲率半径很小时,如形成小液滴或小汽泡,才会显示出来。
综上情况其结论是:饱和气压的大小,与物质的性质有关,与液面的形状有关,并随着温度的升高而增大,但它跟饱和蒸气的体积无关。
【过饱和蒸气】在一定温度下,超过饱和蒸气应有的密度而仍不液化或凝华的蒸气。即在蒸气凝结的初期,由于形成的液滴很小,相应的饱和蒸气压就很大。因此,有时蒸气压超过平面上饱和蒸气压几倍以上也不凝结,这种现象叫做过饱和,这种蒸气叫“过饱和蒸气”。处于过饱和状态的蒸气,极不稳定,一旦出现凝结核,部分蒸气就会凝结成液体,其余蒸气就回到了饱和蒸气的状态。由于蒸气中充满了尘埃和杂质等小微粒,它们起着凝结核的作用。当这些微粒表面凝上一层液体后,便形成半径相当大的液滴,凝结就容易发生。在有凝结核时,蒸气压只要超过饱和蒸气压1%,即可形成液滴。带电的粒子和离子都是很好的凝结核,静电吸引力使蒸气分子聚集在它的周围而形成液滴。高能量带电基本粒子在其运动过程中会形成离子,这些离子就成为凝结核,云室中的过饱和水蒸气凝结在它上面,而形成雾状踪迹,由此可观察粒子的轨迹,因而过饱和蒸气在高能物理的研究方面有重要的作用。
【过冷蒸气】由于过饱和蒸气的密度对应于较高温度时饱和蒸气的密度,所以过饱和蒸气也叫“过冷蒸气”。参阅“过饱和蒸气”。
【未饱和蒸气】没有达到饱和程度的气叫“未饱和蒸气”。当液体在汽化时,从液体中不断飞出大量的分子而形成蒸气。在蒸发过程中,由于分子的热运动,也有部分分子从蒸气中返回液体中。在一定温度下,若单位时间内返回的分子数小于飞出的分子数,蒸气的密度还可增加。未饱和蒸气和饱和气两者性质不同,但在一定条件下可相互转化。用增加气压(减小它的体积),或降低蒸气的温度,可使未饱和蒸气变成饱和气。也可用减少蒸气的压强(增加它的体积),或增高蒸气的温度,而把饱和蒸气转变成未饱和气。未饱和气跟实际气体一样,它的压强、体积跟温度的相互关系近似地遵循理想气体的定律,而且它与饱和状态愈远,就越符合气体定律。而饱和气的体积、压强、温度变化是完全不遵循理想气体定律的,这就是未饱和蒸气与饱和蒸气在性质上的区别。
【水蒸气】亦称水汽 是水的气态,这是由水汽化(包括蒸发或沸腾)或冰升华而成,是一种透明无色无味的气体。在空气中容易凝成许多细小水滴而成白色云雾状。由于大气温度变化,云、雨、雾、露、雪等都由此演变而成。
【液化】物质由气态变为液态的过程,称作“液化”。在液化过程中物质放出热量而温度降低。物质由气态变为液态,必须降低到临界温度以下才能将气体液化,可通过加压或降温的方法来实现。临界温度较高的气体,如氨、二氧化硫、乙醚和某些碳氢化合物,在常温下压缩即可变为液体。有些物质,如氧、氮、氢、氦等的临界温度很低,必须预冷到临界温度以下再压缩才能使之液化。例如,氦气是1908年最后一个被液化的气体,它的临界温度是—268℃,液化这样的气体,必须具备先进的科学技术与设备。
【云】云是含有水蒸气的空气在上升时所形成的。在空气上升时,越升高到上空,气压便越低,需用自身的热来膨胀,这叫做绝热膨胀。每升高100米,气温就降低1℃。气温降到露点以下时,空气中的水蒸气以大气中的微粒为中心而凝结,成为半径等于0.01至0.05毫米的无数小滴,这就是“云”。由于日照,地面空气上升,造成对流,不同温度之气流相遇,向外辐射部分热量,水气就凝结成云。气流受山脉的阻挡,沿山腰而上升,或受低气压中心的影响使悬浮在空中由大量水滴或冰晶组成可见的聚合体。按云层高度,一般可分为高云、中云、低云和直展云四族。外形或成层、或成块、或呈波状,由云状演变,能表明大气结构情况和天气的变化。
【雨】是云中降落的液体水滴。这是由云中的冰晶或雪粒因水汽转移、碰撞、合并等作用,在不断增大到上升气流无力支持时下降融化而成。也有由液体水滴直接增大下降而成的。雨滴的直径为0.1~7毫米。在暖云中有大小水滴共存时,由于各水滴上的饱和蒸气压不同,不能维持平衡。小的水滴将蒸发,蒸气将在大的水滴上凝结,大水滴不断长大,最后落到云外而成雨。
【暧云】由水滴构成的云称为“暖云”。见“雨”条。
【雪】从云中降落的白色结晶的六角形固体。它是由于水蒸气在高空遇低温气流,水蒸气在空中直接凝华所致。雪花呈六角形晶体又称六出。雪花形状的形成与空气中含水汽的多少及温度的高低有关。
【雪雨】温度低于0℃时云中的水滴形成冰晶,这种云称为冷云。但往往会有一部分水滴不凝固而与冰晶共存,这种云称为混合云。在冷云和混合云中,由于冰晶大小不同,或由于冰晶上的饱和蒸气压小于水滴上的饱和蒸气压,有些冰晶不断长大,最后落到云外,成为雪加雨的混合物,故俗称雪雨。
【冷云】见“雪雨”条。
【制冷机】产生低温的装置。要使气体液化首先要获得低温,只有使气体的温度下降到临界温度以下时才能用增大压强的方法使它液化。已知临界温度较高的气体只要稍微压缩就能使它液化,同时放出热量。而当压强减小时,它又可能汽化,同时吸收热量。所以当液化剧烈汽化时,可以使周围的物体冷却。利用这一方法可获得低温。这一冷却的原理,就是制冷机、冷藏库等冷冻装置的依据。
冷冻装置的构造,主要是由蒸发器,压缩器和冷凝器三个主要部分组成。压缩器把蒸发器螺旋管中的气体氨用高压压入冷凝器的螺旋管中。由于在压缩过程中对氨做功,所以气体氨的温度要升高。在冷凝器螺旋管外面有流通的冷水,它们吸收了氨的热量后使被压缩的气体氨的温度降低,凝结成液体。液体氨由活门流入蒸发器的螺旋管中,冷凝器中压强约为1.2MPa,而蒸发器中大约只有0.3MPa,所以液体的氨进入蒸发器后很快就汽化,并且需要吸收热量而使周围的物体冷却。在蒸发螺旋管的下面放置冷冻箱,它的温度可低到-10℃左右,故可作为冷藏或制冰之用。
【制冷剂】它是制冷设备的工质,是通过对流及液、气两相的转化而带走热量的流体。常用的工质是液态氨。液态氨的蒸发热较大(在沸点-33.35℃时为1370.1焦耳/克),因此它可作致冷剂藉以制冰,或用于电冰箱等设备中。
【湿度】表示大气干燥程度的物理量。在一定的温度下在一定体积的空气里含有的水汽越少,则空气越干燥;水汽越多,则空气越潮湿。空气的干湿程度叫做“湿度”。在此意义下,常用绝对湿度、相对湿度、比较湿度、混合比、饱和差以及露点等物理量来表示;若表示在湿蒸汽中液态水分的重量占蒸汽总重量的百分比,则称之为蒸汽的湿度。
【绝对湿度】单位体积空气中所含水蒸汽的质量,叫做空气的“绝对湿度”。它是大气干湿程度的物理量的一种表示方式。通常以1立方米空气内所含有的水蒸汽的克数来表示。水蒸汽的压强是随着水蒸汽的密度的增加而增加的,所以,空气里的绝对湿度的大小也可以通过水汽的压强来表示。由于水蒸汽密度的数值与以毫米高水银柱表示的同温度饱和水蒸汽压强的数值很接近,故也常以水蒸汽的毫米高水银柱的数值来计算空气的干湿程度。
【相对湿度】空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的“相对湿度”。空气的干湿程度和空气中所含有的水汽量接近饱和的程度有关,而和空气中含有水汽的绝对量却无直接关系。例如,空气中所含有的水汽的压强同样等于1606.24Pa(12.79毫米汞柱)时,在炎热的夏天中午,气温约35℃,人们并不感到潮湿,因此时离水汽饱和气压还很远,物体中的水分还能够继续蒸发。而在较冷的秋天,大约15℃左右,人们却会感到潮湿,因这时的水汽压已经达到过饱和,水分不但不能蒸发,而且还要凝结成水,所以我们把空气中实际所含有的水汽的密度ρ1与同温度时饱和水汽密度ρ2的百分比ρ1/ρ2×100%叫做相对湿度。也可以用水汽压强的比来表示:
例如,空气中含有水汽的压强为1606.24Pa(12.79毫米汞柱),在35℃时,饱和蒸汽压为5938.52Pa(44.55毫米汞柱),空气的相对湿度
而在15℃时,饱和蒸汽压是1606.24Pa(12.79毫米汞柱),相对湿度是100%。
绝对湿度与相对湿度这两个物理量之间并无函数关系。例如,温度越高,水蒸发得越快,于是空气里的水蒸汽也就相应地增多。所以在一天之中,往往是中午的绝对湿度比夜晚大。而在一年之中,又是夏季的绝对湿度比冬季大。但由于空气的饱和汽压也要随着温度的变化而变化,所以又可能是中午的相对湿度比夜晚的小,而冬天的相对湿度又比夏天的大。由于在某一温度时的饱和水汽压可以从“不同温度时的饱和水汽压”表中查出数据,因此只要知道绝对湿度或相对湿度,即可算出相对湿度或绝对湿度来。
【湿度计】用以测定空气的绝对湿度或相对湿度的仪器,称为“湿度计”。种类很多,有干湿球温度计,毛发湿度计,通风干湿计,自记湿度计,露点湿度计等。
【露点】使空气中所含有的水蒸汽达到饱和状态而结露时的温度叫做“露点”。它是表示大气干湿程度的方式之一。在水汽无增减、气压不变的情况下,空气中的水蒸气由于冷却而达到饱和时的温度。当气温与露点的差值越小,表示空气越接近饱和,空气的相对湿度则越高。例如,在某一气压下,测得空气的温度是20℃,露点是12℃,从表中查到20℃时的饱和蒸汽压为2328Pa(17.54毫米汞柱),12℃时的饱和蒸汽压为1402.3Pa(10.52毫米汞柱),则此时。
空气的绝对湿度P=1402.3Pa,
露点的高低和大气的湿度有关。当大气的相对湿度大时露点高,相对湿度小则露点低。若露点在冰点以上,即变成雨、露、云、雾。若在冰点以下,则生成霜、雪、雹等。
【露】空气在较冷的物体表面上凝结成的水滴,这一现象多发生在夜间的户外。例如,天黑后植物或岩石等物体会放出热量而冷却。周围温暖、潮湿的空气,与物体相接触部分,达到饱和状态而成结晶水,附于其上便为露,它是属于液化的现象。这一现象多发生在夏秋之间,因这一时期的昼夜温差较大。
【骤雨】夏季烈日当头,地面水汽上升,易形成剧烈的上升气流,形成乱积云。大粒水滴下落,形成倾盆大雨,并拌有雷声,亦称暴雨。
【雾】白天太阳照射地面,地面吸收并积蓄了大量的热。夜间,热就开始向空中散发而使地面温度降低。如冷至露点以下,就会使接近地面的水蒸汽达到饱和状态。这些饱和水汽就以空气中的烟尘为核心,而凝结为细小的水滴,浮游于空中,如白气,是为雾。雾滴的直径在0.03毫米~0.04毫米。雾的形成条件必须是无风或风力极微弱的情况下,同时要有凝结核,空气还必须冷至雾点以下才行。中国四川的重庆及英国的伦敦,由于地理位置及环境的因素,经常出现大雾,故称之为雾都。
【雾冰】由雾凝冻而成的白色不透明的小粒状的冰晶。在浓雾中当气温降至0℃以下,雾的水滴在物体或冰的表面凝冻而成的。它不像霜一样的结晶,而是小粒状的冰集合体。
【凝结】物质由气相转变为液相的过程,称为凝结,即液化的过程。使蒸汽凝结成液体,在凝结过程中放热。如果蒸汽单独凝结,则常以凝结核为中心而形成液滴,如雾。若蒸汽与液体共存,则凝结一般在液体表面发生。见“液化”条。
【凝结核】蒸汽在凝结过程中,常是以气中的尘埃、杂质颗粒或带电粒子为中心,在它们周围开始凝结,这些起凝结作用的颗粒称作凝结核。如果蒸汽中缺少这种凝结核,则蒸汽将不会凝结,而会成为过饱和蒸汽。
【气泡室】类似于云室,它用高压过热液体取代云室中的过饱和蒸汽。所用的液体通常为液态氢或丙烷等。当液体处于过热状态时,尽管液温已超过正常沸点亦不沸腾。此时若有带电粒子通过,在粒子经过的路径上液体被电离。而这些离子的周围便产生一些小气泡,因而就显示出带电粒子的径迹。
【升华】固态物质不经过液态过程,直接蒸发变成蒸汽的过程叫做“升华”。升华是一个吸热过程,一般在常温和常压下,任何固体表面都会发生升华现象。例如,碘化钾、干冰、硫、磷、樟脑等物质都有很显著的升华现象。从微观角度来看,晶体表面的分子挣脱其他分子的吸引,而跑到晶体外面去成为蒸汽分子的过程就是升华。在三相点的压强以下加热时,固相物质就可以不经过液相而直接变成气相。例如,樟脑丸的逐渐变小,冬天晾在室外结了冰的衣服会变干,这就是升华的结果。
【升华热】是单位质量的物质升华时所吸收的热量,也等于单位质量的同种物质在相同条件下的熔解热与汽化热之和。升华实际上是晶体中的微粒直接脱离晶体点阵结构而转变成为气体分子的现象,把能使1千克物质升华时所吸收的热量称为升华热。如用r表示升华热则有
式中m为升华了的物质的质量;Q为升华时吸收的热量,它的单位也是焦耳/千克。
在升华过程中,微粒一方面必须要克服粒子间的结合力做功,另一方面还要克服外界的压强而做功。根据能量守恒定律,此时必定要从外界吸收热量。因此升华热在数值上与熔解热和汽化热之和相等。其关系式为
r=λ+L。
【干冰】它是固态的二氧化碳(CO2),雪白色,熔点为-78.5℃,能从固态直接升华为气态。在常压下蒸发时可得—80℃左右的低温,减压下蒸发时则温度更低。主要用于食品工业及作致冷剂,亦可用为人工降雨的化学药剂。
【凝华】物质由气态不经液态,而直接转变为固态的过程叫做“凝华”。在这个过程中物质放出热量而降低温度。单位质量的气态物质凝华时,所放出的热量叫做凝华热。在相同的温度状态下同种物质的升华热等于凝华热,且等于相同条件下,它的汽化热和熔解热的和。例如,空气中的水蒸汽遇冷直接凝结于物体的表面,而成霜。
【霜】当气温降至0℃以下,空气中的水蒸汽不经液态而凝华在地面物体表面呈白色的结晶体,叫做霜。霜一般出现于晴朗天气无风的夜晚或清晨。早霜多在晚秋出现,而晚霜则在早春时产生。霜的出现一般受局部地区影响很大,尽管在同一地区,同一时间里,不一定处处都见到霜。在有霜季节,往往伴随霜冻出现。霜是凝华的表现。北方霜降一般在10月底,为初霜期。植物在冷暖过渡季节因周围气温短时间降低到0℃或0℃以下可能遭受冻害。但出现霜冻时霜不一定出现。
【霰】为白色不透明球形或圆锥形的固体降水物,直径比米雪大,2~5毫米。这是由过冷水滴碰撞在冰晶(或雪花)上冻结所致,落地后会反跳,且易破碎。霰多在落雪前在一定对流强度的云中降落,多为阵性降落。
【雹】为球形,圆锥形或不规则形体的冰块,直径大小不一,常见的5~50毫米,也有直径约30厘米的大冰雹。雹常自升降气流特别强烈的积雨云中降落。雹一般是由霰在积雨云中随气流多次升降,不断与沿途雪花、小水滴等合并,形成具有透明与不透明交替层次的冰块。在它增大到一定程度时,上升气流支持不住而降落到地面,俗称冰雹。降雹为阵性,但其危害性却极大。
【三相图】当固体升华时,若固体和它的蒸汽达到动态平衡,则此时的蒸汽叫做饱和蒸汽,它的压强就叫做饱和蒸汽压强。如图2-12P—T图的曲线OS,叫做升华曲线。它表示固、气两相共存时的温度和饱和蒸汽压强之间的关系。P、T两个参量中,只要确定任何一个,则另一参量即可确定,但它们都不能任意选定。图2-12所示的P—T图为三相图。它表示固、液、气三相存在的条件以及相互转变的情况。如果固、液、气三相是平衡共存的,则温度和压强都是确定的,没有哪一个参量可以任意选取。因此,这三条曲线的公共交点O便表示了三相共存的状态,故称做三相点,例如,水的相点的温度是0.01℃(即273.16开),压强是546.84Pa(4.851毫米汞柱)。
任一物质都有它独特的相图,特别是在冶金工艺方面,相图是重要的依据。掌握三相图可控制相变的条件。由于三相共存是一个不变的系统,三相点是不受其他条件影响而确定的状态,所以,三相点温度是一个确定的温度。为此,才选取三相点的温度作为制定温标的参考点。
【能量守恒定律】在自然界里所发生的一切过程中,能量既不会消灭,也不会创生,它只能从一种形式转变为另一种形式或从一个物体转移到另一个物体,而能的总量保持不变。这个规律叫做“能的转化和守恒定律”。或者说,任一封闭系统,无论发生什么变化,其能量的总值保持不变。这一定律包括定性和定量两个方面,在性质上它确定了能量形式的可变性,在数值上肯定了自然界能量总和的守恒性。一种能量的减少,总是拌随某种能量的增加,一减一增,其数值相等。各种不同形式的运动(机械运动、热运动、电磁运动等等)都具有相应的能量,因而这一定律是人类对自然现象长期观察和研究的经验总结。
【热工学】它是以研究热能与机械能互相转化以及如何将热能合理地运用在生活和生产上的一门综合性学科。它以传热学和工程热力学为理论基础。主要研究范围包括锅炉、蒸汽机、汽轮机、内燃机、燃气轮机和制冷设备等的工作原理和结构。原子核反应堆的热能,太阳能以及地下热的利用等也在热工学研究的范围。
【热机】热力发动机的简称。它能够连续不断地把燃料燃烧时所放出的热量,通过传热的方式转变为物质的内能,再通过做功的方式转变为其他形式的能(如机械能)。它的种类很多,但是它们的主要工作原理都是利用高温高压的气体或蒸汽膨胀做功。如蒸汽机、汽轮机、燃气轮机、内燃机和喷气发动机等。是工农业生产、发电、交通运输各部门所需动力的主要来源。热能的来源有燃料燃烧所放出的热能以及原子能、太阳能及地热等。热机的组成必须具备三个组成部分。其一是发热器,它是使燃料所释放出的能量转变为工质内能的装置;其二是工作部分,它是使工质消耗内能来做机械功的装置;其三是冷凝器,这部分是容纳工作部分排出的废工质的装置。热机工作时,工质从发热器得到的热量,只有一部分转变为机械功,其余部分都传给了冷凝器。工质从发热器得到的热量是Q1,其中一部分Q2被做过功的废工质带入冷凝器,转变为机械功的只是Q1—Q2。
【工质】热机都是利用气体或蒸汽的膨胀来做功的,在技术上常称气体或蒸汽为热机的工作物质,简称为工质。蒸汽机和汽轮机中的工质是蒸汽;内燃机的工质是汽油或柴油与空气的混合物。
【锅炉】它是高压蒸汽的发生器。在锅炉中燃料的化学能转变为蒸汽的内能。锅炉由火室和汽锅两部分组成。根据构造和形式的不同,可以分为水管式锅炉和烟管式锅炉。水在水管或汽锅中受热变成水蒸汽后,由前水管送到汽锅的上部,汽锅中的饱和水蒸汽又由输汽管送到过热器中,再次受热变成过热蒸汽,过热蒸汽经过送气管送到蒸汽机的汽缸中去推动活塞做功。
从火室中出来的烟气的温度很高,通常在350℃至400℃左右,为此在烟道中装有省煤器,器中装水,以便烟气通过时使水预热升温,将这样的高温水注入汽锅,可避免汽锅温度的剧烈变化。
水管式锅炉蒸发量大,水管、汽锅和火室体积很大,一般用在火力发电站等固定位置。火车上用的是烟管式锅炉,结构简单,体积小,被广泛地使用在火车或小型工厂。
【安全阀】密闭在锅炉里的蒸汽,当压强超过一定限度时,汽锅有爆炸的危险。为保证安全生产,各种锅炉都装有安全阀,安全阀平时是关闭着的。当锅炉里的蒸汽压强超过一定限度时,蒸汽就会顶开安全阀,泄出一部分蒸气,而使锅炉里的气压恢复到安全限度以内,避免事故的发生。安全阀是利用杠杆原理制成的可调节控制汽压的装置。
【蒸汽机】利用蒸汽的循环,把热能转变为机械能的装置。将高温高压的水蒸汽引入蒸汽机的汽缸,利用蒸汽的膨胀,推动汽缸里的活塞往复运动。并且利用活塞杆、十字头、连杆、曲柄、飞轮,使活塞的往复运动转换为飞轮的转动。蒸气机车就是利用蒸汽机为动力的一种装置。
【静点】当蒸汽机的活塞杆、连杆和曲柄位于同一条直线上时,连杆不能使曲柄转动,这个位置叫做“静点”,出现静点时,机器不能运转。为了使曲柄在静点的时候还能够继续转动,就在机轴上装置一个很重的飞轮,依靠飞轮转动的惯性,使曲柄通过静点,维持机器连续不断地转动。活塞往复一次将出现两次静点。也有把静点叫做死点的。
【冷凝器】蒸汽在汽缸中膨胀做功以后,内能已经减少,常把它叫做废汽,或称为废工质。为使蒸汽机继续工作,就必须把废工质从汽缸中排出,并再吸进新的工质。容纳废工质的装置就叫做冷凝器。根据不同的需要冷凝器的种类亦有所不同,火车蒸汽机的冷凝器是大气。常见的冷凝器有喷射式和水管式,废工质经冷凝器后气温降低凝结成水,这部分水含杂质很少,而且水温较高,可经过去油污等处理再送到锅炉里作为给水,既可节约燃料,又能延长锅炉的寿命。
【燃烧效率】燃料在发热器中燃烧时,往往由于设备不够完善而不能完全燃烧,同时也不可能把燃烧时所释放的化学能全部转变为工质的内能。设燃料经过完全燃烧所能够放出的热量是Q,传递给工质的热量只有Q1,那么燃烧效率:
因为燃料的燃烧过程是在锅炉中进行的,所以燃烧效率也称为锅炉效率。
【热效率】工质从发热器吸收到的热量Q1,在做功时并不能全部转变为机械功,其中总是有一部分热量Q2要被废工质带出热机的工作部分。所以转变成机械功的净热量是Q1—Q2,而热机的热效率:
【机械效率(热学)】由热量Q1—Q2转变而成的机械功不能全部传到发动机轴上作为输出的有用功,其中有一部分要消耗在传动装置上,例如消耗在活塞、十字头、曲柄以及转动轴等处的摩擦上。因此传到机轴上的与有用功相当的热量Q3,又是Q1—Q2中的一部分。所以热机的机械效率:
【热机的总效率】热机的总效率又叫做热机的经济效率,或有效效率,有时也简称为效率。它是与最后转变为机轴上有用功相当的热量Q3跟燃料完全燃烧时所能够放出的热量Q的比值,通常用百分比来表示。所以热机的总效率
从上式看出
即
η总=η燃·η热·η机。
蒸汽机的效率很低,目前最好的蒸汽机的效率也不过在15%左右,提高热机效率是热力工程中的重要任务,一般是从提高热机的燃烧效率、热效率和机械效率三方面着手。首先是改进锅炉的装置,提高热机的燃烧效率。可用煤粉代替煤块,将煤粉喷入火室,并输入热空气助燃,使煤充分燃烧放热。同时改进水管锅炉的构造,增加水的受热面积,并利用省煤器、空气预热器等等。其次是提高发热器的温度、压强和降低冷凝器的温度、压强,借以提高热机的热效率。
卡诺(法国工程师)在理论上研究了热机效率,并提出了没有热损失和摩擦损失的,热效率最高的理想热机的模型。理想热机热效率计算式是
其中T1代表发热器的绝对温度,T2代表冷凝器的绝对温度,从公式得出提高热机热效率的主要途径就是提高T1降低T2。因此,目前对锅炉的制造正朝向高温高压方向发展。在锅炉中都用过热器来提高蒸汽的温度和压强,并且用提前闭汽、多级膨胀、减低冷凝器压强等方法来降低废汽的温度,从而提高热效率。
【内燃机】是将燃料引入汽缸内,利用燃料和空气在汽缸里燃烧,产生高温高压气体急剧膨胀对外做功,推动活塞运动的机器叫内燃机。它的发热器是在工作部分之内的。为了使内燃机连续工作,必须把已膨胀做功后的气体排出,重新装入燃料和空气,再进行第二次燃烧。内燃机主要可分为奥托内燃机和狄塞尔内燃机两种。奥托内燃机通常用汽油作为燃料,而狄塞尔内燃机则是用柴油为燃料。
【汽油机】是内燃机的一种,用挥发性高的汽油作燃料,汽油机将雾状汽油和空气的混合物引入汽缸,然后利用电极火花,使混合气体燃烧,燃烧时所形成的高温高压气体推动活塞,作往复运动。往复运动又利用曲柄等使移动变为转动。
奥托内燃机的工作过程可分为四个冲程来进行,即吸气冲程、压缩冲程、做功冲程(燃料燃烧气体膨胀而做功,也可叫爆发冲程)和排气冲程,这四个冲程是内燃机的一个循环。从内燃机做功的条件来看,可燃气体的化学反应是它的能源,造成工质的高温;汽缸活塞是它的工作部分;做了功的废工质排出到大气中以大气作为它的冷凝器。因为可燃烧的混合气体在汽缸内燃烧时所产生的温度很高(约在1500℃以上),所以内燃机的效率要比蒸汽发动机的效率高。奥托内燃机在工作中,约有25%的热量作为有用功,10%的热量损失于摩擦中,25%的热量由废气带走,40%的热量传给汽缸外的冷却水,因此它的效率一般是在20~30%。奥托内燃机的功率大小不一,小的约367.7瓦(1/2马力),大的可到1838.8千瓦(2500马力)。
【上止点】活塞在距曲轴中心最远的位置,即活塞杆、曲柄在一条直线上,出现静点时的状态,叫“上止点”。
【下止点】活塞在距曲轴中心最近的位置,即活塞杆、曲柄在一条直线上,出现静点时的状态,叫“下止点”。
【冲程】活塞由下止点到上止点或由上止点到下止点之间的距离,即“活塞冲程”,亦称“行程”。往复式机械中的活塞在汽缸中往复运动时,两个极端位置间的距离。亦指活塞走过这距离的过程。
【四冲程】内燃机是通过吸气、压缩、燃烧、膨胀、排气几个过程不断重复进行的。如果是在四个冲程里完成吸气、压缩、做功(燃烧、膨胀)、排气的循环动作,就叫做四冲程。相应的内燃机叫四冲程内燃机。
第一冲程,即吸气冲程。这时曲轴向下转动,带动活塞向下,同时通过齿轮带动凸轮向下旋转,使凸轮的凸起部分顶开进气阀门,雾状汽油和空气混合的燃料被吸入汽缸。
第二冲程,即压缩冲程。曲轴带动活塞向上,凸轮的凸起部分巳经转了过去,进气阀门被关闭,由于凸轮只转了1/4周,所以排气阀门仍然处于关闭状态。活塞向上运动时,将第一冲程吸入的可燃气体压缩,被压缩的气体的压强达到0.6~1.5兆帕,温度升高到300℃左右。
第三冲程是做功冲程。在压缩冲程末火花塞产生电火花,混合燃料迅速燃烧,温度骤然升高到2000℃左右,压强达到3~5兆帕。高温高压烟气急剧膨胀,推动活塞向下做功,此时曲柄转动半周而凸轮转过1/4周,两个气阀仍然紧闭。
第四冲程是排气冲程。由于飞轮的惯性,曲柄转动,使活塞向上运动,这时凸轮顶开排气阀,将废出排出缸外。
四个冲程是内燃机的一个循环,每一个循环,活塞往复两次,曲轴转动两周,进、排气阀门各开一次。
【二冲程内燃机】如果在两个冲程里完成进气、压缩、做功、排气这些循环动作,就叫二冲程,相应的内燃机叫二冲程内燃机。
【辅助冲程】即进气冲程、压缩冲程和排气冲程的统称。为完成做功,这三个冲程都是为做功而准备的,故称之为辅助冲程。
【辅助设备】内燃机除主要做功部分之外,还有燃料、点火、冷却及润滑四个辅助设备系统。燃料系统主要是化油器,它是把汽油和空气按一定比例配制成雾状的混合气体,以供给汽缸作为燃料使用;点火系统是由蓄电池、线圈、火花塞等部分组成,火花塞是由齿轮来管理的,它能够按时在气缸中产生电火花,使压缩的混合气体燃烧爆炸;冷却系统,主要部分是汽缸外部缸体的水套,使水在其中可以流动,因为燃料在汽缸中燃烧时,汽缸的温度可以升到2000℃左右,使汽缸壁和活塞发热,易使机件损坏,故汽缸外壁的水套中的水吸热上升进入散热器,降温后,再用抽水机将冷水打回水套中,使水循环地将汽缸冷却。小型内燃机和少数飞机也常用空气减热法,使汽缸外壳与空气接触面积增大,将热散逸到空气中去;润滑系统,是为防止金属磨损,而在机内装有油盘、抽油泵等装置向机件各部分输送润滑油,以减小摩擦损耗。
【柴油机】一般称作狄塞尔内燃机,它是19世纪末叶由德国工程师狄塞尔设计的,其构造原理与奥托内燃机大体相同,主要区别是它将石油或柴油喷进汽缸作为燃料燃烧,而不是用汽油的混合气体作为燃料。同时,在压缩冲程中也不是压缩可燃性混合气体,而是单纯压缩空气。汽油机是利用火花塞来点燃燃料,而柴油机顶部有个喷油嘴,利用高温空气将柴油引燃,故称压燃式。它也有四个冲程:第一冲程是吸气冲程,它吸入气缸里的只是空气。第二冲程是压缩空气,汽油机只把燃料混合物的体积压缩到吸气冲程末的1/6~1/9。如果压缩得更多,在压缩过程的中途,燃料混合物就因温度升高超过燃点而燃烧,机器将发生反转,无法正常工作。柴油机则可把空气的体积压缩到吸气冲程末的1/16~1/22,压强达到4兆帕左右,温度可高达500~700℃,超过柴油的着火点。第三冲程是做功冲程。在压缩冲程结束时,柴油在高压作用下从喷油嘴高速喷入汽缸,雾状液滴与热空气相遇立刻燃烧,由于柴油喷发时间较长,所以燃烧时间也较长,燃烧温度高达2000℃左右。第四冲程是排气冲程,与汽油机相同。
【压缩比】气体进入汽缸后的最大体积跟被压缩后最小体积的比值,叫做“压缩比”。压缩比不能过大,因它受其他条件的限制。在奥托内燃机里,被压缩的是汽油和空气的混合气体,如果压缩得太过分,温度会升得太高,这就可能使在活塞还没有达到压缩冲程的终点时就自燃起来。这时活塞本应向上运动,却由于自燃气体的膨胀而向下运动,结果机轮反向转动,产生打倒车的现象,这对机件的损坏是严重的。奥托内燃机的压缩比一般不能超过4~5。而在狄塞尔内燃机里,被压缩的是空气,压缩比不受液体燃料燃点的限制,因此可以提高到12~20。但也不宜过高,否则必须采用很笨重的机件才能承受压缩终了时的压强。
【蒸汽轮机】蒸汽轮机是由一个中央很厚的钢盘和钢盘外沿弧形叶片所组成,当蒸汽喷射到叶片上时,轮机就转动起来,而且蒸汽速度越大,轮机转动得越快。利用蒸汽使叶轮转动的机器叫“蒸汽轮机”。
当气体从高压空间流向低压空间时,压强差越大,流动的速度也越大。因此在蒸汽轮机里就利用喷嘴,使水管式锅炉的过热管送来的过热蒸汽,从喷嘴喷出时,体积开始急剧地膨胀,同时压强降低,速度增大,这样的蒸汽具有很大的动能。也就是说蒸汽的内能在喷嘴中转变为蒸汽的动能。当蒸汽喷射到叶片上时,它的动能又转变为机轴旋转的机械能。
为了提高蒸汽使用效率,常采用压力多级冲动式的汽轮机。蒸汽轮机跟蒸汽机相比,在同样功率下,重量轻、体积小,不需用曲柄和飞轮等机械来将移动改为转动,因此转动均匀,没有振动;转动速度高,每分钟可达3000转;它的缺点是只能沿一个方向转动,不能开倒车,蒸汽轮机必须和高压锅炉配套使用,故此它只能用在发电厂或巨型舰艇上。
【燃气轮机】燃气轮机的基本原理与蒸汽轮机很相似,不同处在于工质不是蒸汽而是燃料燃烧后的烟气。燃气轮机属于内燃机,所以也叫内燃气轮机。构造有四大部分:空气压缩机,燃烧室,叶轮系统及回热装置。
燃汽轮机是利用气体作为工质在燃烧室里燃烧,将燃料的化学能转变为气体的内能。在喷嘴里,气体的内能转变为气体的动能,燃气高速喷出,冲击叶轮转动。
燃气轮机优点是不需连杆、曲柄、飞轮等装置,又不需锅炉,因此体积小、重量轻,功率大到100000~200000千瓦,效率高达60%,广泛地应用到飞机上,作为动力装置。但是喷射到叶轮上的汽体温度高达1300℃,因此叶轮需昂贵的特殊耐热合金来制造,加工难,成本高。耗油量大,在同样功率下比活塞式汽油机多2倍,故燃气轮机适宜于735~2205千瓦(1000~3000马力)以上的飞机和船舶上。
【空气喷气发动机】它是利用气体从尾部高速喷出时所产生反冲的推力来推动机身前进的机械。由于活塞式内燃机的螺旋桨叶转得越快,它所受到的阻力也越大,效率就低。所以它的速度不能超过211米/秒。而且这种飞机只能在空气中飞行,因此飞行的高度及速度都受到限制。
喷气式发动机的燃料在燃烧室内燃烧后,产生高温和高压的气体,这种气体从尾部以极高的速度喷出,同时产生反作用力,推动机身向前运动。喷气机的作用是直接产生反冲推力,把燃料的内能转变为燃气的动能和飞机前进的机械能,而不需要通过能量转变的中间结构——活塞、螺旋桨等,减少了能量的损失,从而提高飞机的飞行速度。
喷气式发动机可分为两大类,即空气喷气发动机和火箭喷气发动机。空气喷气发动机本身携带燃料,他需要利用外界的空气来帮助燃烧。因此它不适宜在空气稀薄的高空飞行。发动机的种类很多,常见的有冲压式和气轮式等。
【热力学基本定律】通常是将热力学第一定律及第二定律视作热力学的基本定律,但有时增加能斯特定理当作第三定律,又有时将温度存在定律当作第零定律。一般将这四条热力学规律统称为热力学定律。热力学是热现象的宏观理论,它是以这四条定律为基础建立起来的理论。
【热力学第零定律】若两个热力学系统中的任何一个系统都和第三个热力学系统处于热平衡状态,那么,这两个热力学系统也必定处于热平衡。这一结论称做“热力学第零定律”。热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法。定律中所说的热力学系统是指由大量分子、原子组成的物体或物体系。它为建立温度概念提供了实验基础。这个定律反映出:处在同一热平衡状态的所有的热力学系统都具有一个共同的宏观特征,这一特征是由这些互为热平衡系统的状态所决定的一个数值相等的状态函数,这个状态函数被定义为温度。而温度相等是热平衡之必要的条件。因此,这一基本物理量实质是反映了系统的某种性质。
【热力学第一定律】是热力学的基本定律之一。是能的转化与守恒定律在热力学中的表现。它指出热是物质运动的一种形式,并表明,一个体系内能增加的量值△E(=E2-E1)等于这一体系所吸收的热量Q与外界对它所做的功之和,可表示为
△E=E2-E1=Q+W
即W+Q=△E。在这个公式中,突出了做功和热传递是改变系统内能的两种不同形式,可通过做功和被传递的热量来量度系统内能的变化。在上述公式中,当外界对系统作功时,W为正值;若系统对外作功时,W为负值。如外界向系统传热,Q即为正值;若系统向外界放热,则Q为负值。当△E为正值时,表示系统的内能增加;如果△E为负值时,则表现系统的内能在减少。
对热力学第一定律也可以从另一侧面来描述,即外界传递给系统的热量等于系统内能的增量和系统对外所作的功的总和。如果外界传递给系统的热量为Q,使系统从某一平衡状态到达另一平衡状态,内能的增加为E2-E1,同时对外作功W′,则热力学第一定律可表示为
Q=(E2-E1)+ W′
即Q=△E+W′。在这个公式中,当系统从外界获得热量时,Q>0为正值;而当系统向外界释放热量时, Q<0为负值。若系统对外界作功, W′>0为正值;若外界对系统作功,W′<0为负值。在系统内能增加时,△E为正值,若系统的内能减少时,则△E为负值。
上式是从热机的效率角度考虑,外界传递给系统的热量,一部分用来增加系统的内能,另一部分就是系统对外所作的功。
在运用热力学第一定律的数学表达式△E=W+Q解题时,应了解表达式的适用范围,应注意各物理量的正、负号表示的意义,以及式中的各量单位要统一。对热力学第一定律从广义上理解,应把系统内能的变化看作是系统所含的一切能量(如化学的、热的、电磁的、原子核的、场的能量等)的变化,而所作的功是各种形式的功,于是热力学第一定律就成了能量转换和守恒定律。
热力学第一定律也可表述为,第一类永动机是不可能制造的。
【第一类永动机】在热力学第一定律建立以前,人们曾幻想制造出一种永动的机器,不需要任何燃料和动力,又不消耗系统本身的内能,却能不断对外做功而且永远运转,这类机器叫“第一类永动机”。根据能的转化与守恒定律,系统在对外做功过程中,它的内能要减小,要想不减少它的内能,外界必须同时对它传递热量或对它做功,不断地给系统补充能量,系统才能持续不断地对外做功。这种违背能量守恒与转化定律的器械,也就是违背热力学第一定律的器械永远也不可能制造成。
【热力学第二定律】热力学的基本定律之一。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的总结。自热力学第一定律被发现以后,人们注意到许多自行发生的过程都是单方向的,例如热量从高温物体传到低温物体,液体由高处向低处流动,气体的扩散与混合,其反向自行发生的过程虽然没有违反第一定律,却从来还没有发现过,可见除了第一定律外,必定还有其他的定则在限制这些过程的发生。克劳修斯、开尔文等人,从将热转变为功时遇到的经验归纳成热力学第二定律。它实质上指出了宏观热现象的不可逆性。它的表述有很多种,但实际上都是互相等效的。如下列几种表述:
1.克劳修斯表述:克劳修斯在1850年提出的。热量总是自动的从高温物体传到低温物体,不可能自动地由低温物体向高温物体传递。在它的表述中,指出在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,这个转变过程是不可逆的。若想让热传递方向逆转,则必须消耗功才能实现。
2.开尔文表述:开尔文在1851年提出的。不存在这样一种循环过程,系统从单一热源吸取热量,使之完全变为有用功而不产生其他影响。表述中的“单一热源”是指温度均匀并且恒定不变的热源;“其他影响”指除了由单一热源吸热,把所吸的热用来作功以外的任何其他变化。若有其他影响产生时,把由单一热源吸来的热量全部用来对外作功是可能的。自然界中任何形式的能都可能转变成热,但热却不能在不产生其他影响的条件下完全变成其他形式的能,这种转变在自然条件下也是不可逆的。热机在运行过程中,可连续不断地将热变为机械功,一定伴随有热量的损失。第二定律和第一定律两者有所不同。第二定律阐明了过程进行的方向性。
开尔文还将它表述为:第二种永动机是不可能造成的。第二种永动机就是能从单一的热源吸收热量使之完全变为有用的功而不产生其他影响的机器。
除克劳修斯、开尔文的表述外,还有各种不同的陈述,例如,热效率为100%的热机是不可能造成的;热传导、摩擦所产生的热现象是不可逆的;不需要由外加功而可操作的致冷机是不可能造成的等等。不论如何描述,其内容彼此相同,不外乎主张不可逆变化的存在。从分子运动论的观点看,热运动是大量分子的无规则运动,而作功则是大量分子的有规则的运动。无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,总是从包含微观状态数目少的宏观状态向包含微观状态数目多的宏观状态进行。由此可见热是不可能自发地变成功,这就是热力学第二定律的统计意义。
根据热力学第零定律,确定了态函数——温度;根据热力学第一定律,确定了态函数——内能和焓;根据热力学第二定律,也可以确定一个新的态函数——熵。可以用熵来对第二定律作定量的表述。
热力学第二定律在引入熵的概念后,可用数学形式表示。其积分形式为
式中不等号对应于不可逆过程,等号对应于可逆过程,角码1和2分别表示系统的初状态和末状态,S表示系统的熵。热力学第二定律的微分形式
式中不等号对应于不可逆过程,等号对应于可逆过程。在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规律叫做熵增加原理。熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则、更无秩序的状态演变。
【第二类永动机】只由单一的热源吸取热量而使其全部转变为对外界作功以外,对其他外界不产生任何效应的循环过程而制造的机器,称为“第二类永动机”。这是一种不可能实现的热机,而导致克劳修斯原理,并形成了热力学第二定律的基础。这种热机虽然不违背热力学第一定律,却违背热力学第二定律。要想制造出热效率为百分之百的热机是绝对不可能的。
【热力学第三定律】此定律指出,设想通过几个有限的步骤使物体冷却到绝对零度,是不可能的。这一表述是能斯脱于1912年根据对低温现象的研究得出能斯脱定理的推论。
【P—V图】对于一个均匀系统,在不受外力场的作用下,如气体系统的压强P、体积V和温度T三个状态参量中,只有两个是独立的,或者说只要确定其中两个,就可以确定系统的一个平衡态,因此在以V为横坐标,以P为纵坐标的坐标系中,用一点可表示系统的一个平衡态,用一条线可表示系统的一种准静态过程,由此构成了P—V图。但是非静态过程和非平衡态都不能在P—V图中表示。
【循环】一热力系统,从某一宏观状态出发,经过任意的一系列状态变化后,又恢复到原来的状态,如此周而复始的变化过程就组成了一个循环过程,称做“循环”。循环过程即为在过程的终点,系统又回到起始状态。
如果一个循环所包含的过程都是准静态过程,这一循环就可以在P—V图上表示为一条闭合曲线,如图2-13所示。在P—V图上,若系统沿过程1从A走到B是沿顺时针方向进行的,称为正循环;若循环过程2是从B走到A沿逆时针方向进行的,称为逆循环。在从A走到B时,其所作之功等于曲线1以下之面积,即A1BV2V1A之面积;在从B返回A时,其所作之功等于曲线2下的负面积,即B2AV1V2B之面积。在这一循环中,系统所作之净功,即为此循环之曲线所包围以内阴影部分之面积,即A1B2A的范围。
【循环过程】用一个单一的过程将热能转化为机械能是完全可以的,但是,要想只靠一个单独的变化过程连续地把热能转化为机械能,这不仅是不可能,而且也不切实际的。例如,当气缸中的气体作等温膨胀时,虽然可以把它由外界吸取的热量转化为对外做功,可是这一过程不能连续地进行下去,由于气缸长度的限制,因而活塞移动的范围总是有限的;另一方面,即使不切实际地将气缸做得长些,当活塞向外移动到一定的位置,使气缸内部气体的压强下降到和外界压强相等时,这时活塞也就不能继续运动下去,过程即刻结束,做功也就停止了。可见,只用一个单一的等温过程不能将热能连续转化为机械能。
要使一部机器能连续地将热转化为功,必须使它的工作物质能够从它做功后的状态再回到原来的状态,并且能重复进行下去。我们把工作物质经过若干个不同的过程之后又回到它原来状态的整个变化过程称为循环过程。由此可见,只有利用循环过程才能把热连续不断地转化为功。因为工作物质(即热力学系统)的内能是状态的单值函数,所以由一个初始状态经过一个循环回到原来的状态时,其内能没有发生变化,即dU=0,这是循环过程的基本特征。参阅“循环”。
【态函数】系统的平衡态一般只需一组最少的,必要而又充分的独立状态参量即可完全确定。而系统的其他参量,则必由状态决定,它们统称为态函数,即系统状态参量的函数。温度、内能、焓、熵等均为态函数。
【摩尔热容量】是1摩尔物质的热容量。在国际单位制中,摩尔热容量的单位为焦耳/摩尔·开。过去曾采用卡/摩尔·开作为摩尔热容量的单位。
【焓】亦称“热焓”。它是表示物质系统能量的一个状态函数,通常用H来表示,其数值上等于系统的内能U加上压强P和体积V的乘积,即
H=U+PV
由上式可知,内能U是可加量,压强与体积的乘积PV也是可加量,所以焓H必然也是可加量。在等压的过程中,在系统温度升高时,不仅由于自身内能增大而吸收热量,而且由于体积的膨胀而对外作功,所以系统吸收的总热量应表示为
(△Q)p=△U+P△V=△(U+PV)=△H
由此说明,在等压过程中,系统温度升高所吸收的热量,等于系统的状态函数焓的增加。这就是态函数焓的最重要的特性。
态函数焓在热化学和热力工程中是非常有用的物理量。它是热力学系统的态函数之一,即焓变与过程无关。
【热源】在热力学中所提到的热源,一般是指热容量很大的物体或装置。当从外界吸收热量时,它的温度并不上升;而向外放热时,它的温度并不降低,故常又称之为热库。
【热效应】指物系在物理的或化学的等温过程中,只做膨胀功时所吸收或放出的热量。有等容热效应和等压热效应。而等压热效应等于过程中焓的增加量(△H),吸热为正而放热则为负(亦有相反者)。热效应随反应的性质不同而有生成热、中和热、燃烧热、溶解热、稀释热等名称。无论是生产还是理论,都广泛地应用这些数据。
【热力状态】按热力学观点表示物系或物体所处的状态称为该物系或物体的“热力状态”。气体的热力状态,一般用气体的温度、压力等状态参数来表示。在一定的热力状态下物体具有一定的状态参数。
【热力循环】凡热能动力装置或热力发动机中的工质为了完成将热量转换为机械能,它从某一状态经过一系列状态的变化重新又回复到初始状态的全部过程或途径,称为热力循环。研究热力循环的目的在于改进热机的循环过程和提高热效率。在热力学理论上最理想的循环是卡诺循环,实际上各种热能动力装置或热力发动机都各自有其相应的特殊循环,如奥托循环,狄塞尔循环等。在参数坐标图上,热力循环总是按顺时钟方向进行。故一般又称正向循环。
【热水供暖】用热水为媒质传递热量的一种供暖方式。散热器表面平均温度大约为80℃,使空气不致过分干燥,适合卫生和舒适环境的要求。媒质传递热量的方式一般有两种方式:一种是用机械使水流动的称“机械循环系统”。它是利用水泵将散热后温度降低的水重新打入锅炉,或用高压泵将热水送入散热器等方式,这种机械循环系统多用在较大范围的供暖区域。另一种是借重力作用使热水在管内流动的称“重力循环系统”。它是靠热水膨胀、冷热水的密度差,靠自身的重力不同而形成循环流动。这种重力循环系统20年前在我国东北地区被广泛使用,近10多年来在华北地区已逐渐在城市中广泛的推广。北京有这种小锅炉厂家约十来家,这种装置俗称“土暖气”。靠重力循环供暖的装置关键之一是锅炉的设计,水套(内外炉体的两铁板间的水区)为1~2厘米的厚度,炉膛泥厚1厘米;关键之二是出水及回水管的倾斜角度;其三是补水方式;最后应注意装排气机构,防止发生爆裂危险。
热水供暖易于调节,室内气温稳定,管理方便,燃料比较节约,较煤球烟筒式火炉安全卫生,但设备投资较大。
【致冷系数】这是致冷机效能的重要标志之一。是为从能量转化的角度研究各种致冷机的性质而引入的一个物理量。其致冷系数被定义为
式中Q1是致冷机在一个逆循环过程中释放给外界高温热源的热量。Q2是致冷机在一个逆循环过程中从外界吸收的热量,W是外界对系统所作的功。
【可逆过程】一个系统,由某一状态出发,经一个过程,系统发生了变化,外界也要发生变化,经这一过程后达到另一状态。若存在另一过程,它能使系统和外界完全复原(即系统回到原来的状态,同时消除了原来过程对外界引起的一切影响),则原来的过程称为“可逆过程”。其逆过程亦为可逆过程。自然界一切实际过程都不可能是可逆过程,但可控制条件,如消除摩擦力、粘滞力和电阻等产生耗散效应的因素,以避免热效应,从而在系统达到平衡态后,作无限缓慢的变化,这样就可实现可逆过程。无摩擦的准静态过程是可逆过程。可逆过程的概念,是对实际过程的理想化。
【不可逆过程】凡不满足可逆过程条件的过程均称不可逆过程。一切与热现象有关的实际宏观过程都是不可逆的。自然界中各种不可逆过程都是互相关联的,即由某一过程的不可逆性,可推断另一过程的不可逆性。热力学第二定律的开尔文表述,说明功变热的过程是不可逆的。而克劳修斯表述,指出热传导的过程是不可逆的。这两种表述实际上分别挑选了一种典型的不可逆过程。由于各种不可逆过程都是互相关联的,所以每一个不可逆过程都可以选为表述热力学第二定律的基础。
【原子量】原子量表示的是原子的相对质量。通常用A表示。其意义是:一个原子的质量比另外一种元素的原于质量大若干倍或小若干倍。若取某一种元素的原子量作为标准,那么就可以表示出其他原子的相对质量。国际上规定以碳(C12)原子质量的
其他原子的质量与它的比值,就叫做该元素的“原子量”(过去,国际上曾规定用氧原子质量的 例如,氧的原子量为
它是个比值,没有单位。
【分子量】也是以碳(C12)原子质量的 计算出
来的分子相对质量,通常用μ表示。分子量等于构成分子的各个原子的原子量的总和。例如,水(H2O)分子的分子量是两个氢(H)原子和一个氧(O)原子的原子量的总和,计算得
μ=2×1.0078+15.9994=18.0150。
而氢的分子量μ为2.0156;氧的分子量μ为31.9988。分子量仅仅是个比值,它没有单位。
【摩尔质量】常称为克分子量。一定质量的某种物质,如果用克作质量的单位,其数值恰好等于该物质的分子量的大小时,那么,这一定数值的质量就叫做1“摩尔质量”。例如,碳是单原子分子,因此12克的碳就称为1摩尔质量的碳;氧是双原子分子,即由两个氧原子组成一个氧分子,因此,32克的氧就称为1摩尔质量的氧;氢也是双原子分子,因此2克的氢也称为1摩尔质量的氢。水是由氢和氧组成的,18克的水就是1摩尔质量的水,98克的硫酸(H2SO4)就是1摩尔质量的硫酸。由上例可看出,摩尔质量是表示物质质量的一种重要单位。
【气体分子运动论】气体分子运动论是把分子运动论的概念具体运用于气体上,它是以气体中大量分子作无规则的热运动为基础,从气体微观结构的一些简化模型出发,根据力学定律和大量分子的热运动所表现出来的统计规律来说明气体的性质。这一理论阐明了气体对容器的器壁所产生的压强是由于大量分子与器壁发生碰撞而产生的,气体温度的升高是由于分子平均平动动能增加的结果;这个理论初步揭示了气体的扩散、热传导和粘滞等现象的本质,解释了许多关于气体的实验定律。它不仅可以研究气体的平衡态,而且可以研究气体中由非平衡态向平衡态转变的过程。
【理想气体】把严格服从波义耳-马略特定律、盖·吕萨克定律和查理定律的想象的气体,称为“理想气体”。气体分子运动论的研究对象主要是气体物质系统。在通常情况下,气体中的分子本身所占的体积,比起气体分子所能自由活动的空间,即气体的体积是小得多的,所以分子本身的大小可忽略不计。例如,在温度为0℃、压强为1大气压下的气体,其密度不到液体的密度的千分之一。在某种情况下忽略气体分子本身的大小对我们研究的问题影响并不大。若在高温低压的情况下,将气体分子本身的大小忽略掉,则影响就更小。至于气体分子之间的相互作用力,由于它随着分子之间距离的增大而迅速地减小,故在一般常温、常压下,也可忽略不计气体分子之间存在着的分子力。也就是说,除了气体分子之间发生碰撞的瞬间之外,可认为气体分子之间是没有相互作用的。此外,也不考虑气体分子的内部结构,即认为分子在碰撞过程中不发生形变。若将气体分子视为刚体,而分子间的碰撞又是完全弹性碰撞,那么,气体分子就遵守动量守恒和动能守恒定律。符合上述要求的气体即称为理想气体。在通常的温度和压强下,理想气体和实际气体的性质差别并不太大。因此,所有的实际气体在温度不太低、压强不太大的情况下,都可近似地看作理想气体。
【实际气体】就是实际存在的气体。为了区别于理想气体而引入的。两者区别在于,组成实际气体的分子具有一定的体积,分子之间存在着相互作用。这就使实际气体的行为与理想气体不同,特别是在低温和高压条件下,更需考虑它们的差别。而在通常条件下,特别是在高温、低压下,实际气体的行为与理想气体甚为接近。
【标准状态】为比较气体体积和其他性质时有一统一的标准,通常规定温度为0℃和压强为1标准大气压的状态,为气体的标准状态。
【理想气体的实验定律】实验指出,在温度不太低、压强不太大的情况下,气体将遵守下列三条基本定律:即玻意耳-马略特定律;盖·吕萨克定律和查理定律。
【玻义耳-马略特定律】它反映气体的体积随压强改变而改变的规律。对于一定质量的气体,在其温度保持不变时,它的压强和体积成反比;或者说,其压强P与它的体积V的乘积为一常量,即
PV=C(常数)(T不变时)
或
P1V1=P2V2=…=PnVn
式中常量的大小与气体系统的温度和气体的质量有关。实际气体只是在压强不太高、温度不太低的条件下才服从这一定律。
【盖·吕萨克定律】它反映了气体体积随温度变化而变化的规律。一定质量的气体,在保持压强不变的情况下,它的体积变化与温度变化成正比,与0℃时的体积成正比,即它的体积随着温度作直线变化,其数学表达式为
V=V0(1+avt)。
式中V为气体在t℃时的体积;V0为0℃时的体积;av是在压强不变时,气体体积随温度变化的系数,称做体膨胀系数。av可由实验测定,对各
体只是在温度不太低,压强不太高的条件下才服从这一定律。若偏离这一条件,则实际气体的行为也将偏离这一定律所反映的规律。
【查理定律】它反映了气体压强随温度变化而变化的规律。一定质量的气体,当其体积保持不变时,它的压强P变化与温度T的变化成正比,与0℃时气体的压强成正比,即压强随温度作直线变化,其数学表达式为
P=P0(1+apt)。
式中P为气体在t℃时的压强;P0为气体在0℃时的压强;aP为体积不变时,气体压强随温度变化的系数,称作压强系数。根据实验的测定,
实际气体只是在温度不太低,压强不太高的条件下才服从这一定律,若偏离这一条件,则实际气体的行为亦将偏离这一定律所反映的规律。
【理想气体状态方程】波义耳-马略特定律,盖·吕萨克定律及查理定律给出了一定质量的气体的三个参量P、V、T中有一个保持不变时,另两个状态参量的变化规律。但是,在实际中,这三个参量往往是同时变化的。对于一定质量的理想气体,在平衡状态下,压强P、体积V和温度T之间存有一定的关系,可用两种形式来表示。其一是
式中角码1和2分别代表系统所处的两个平衡态。其二是
或者写成
PV=υRT。
式中M、υ和μ分别是气体的质量、摩尔数和摩尔质量,R为普适气体常数。这种形式亦称为克拉珀龙方程。以上两种形式都是理想气体状态方程。理想气体状态方程表明:一定质量的气体,当其状态发生变化时,它的任意两个平衡态的状态参量之间的关系。对一定质量的气体,P、V、T三个状态参量,并不全是独立的,任何两个参量确定之后,第三个参量也就唯一地确定了,只需两个独立参量,即可描述理想气体的状态。
【普适气体常数】是表征理想气体性质的一个常数,由于这个常数对于满足理想气体条件的任何气体都是适用的,故称普适气体常数。亦称通用气体常数,或称气体常数。若Pr表示在水的三相点时的压强,Vr表示1摩尔理想气体在水的三相点时的体积。其表达式为
上式也可以表示为
式中P0表示在零摄氏度时的压强,通常选P0=1标准大气压,V0表示1摩尔理想气体在零摄氏度和1标准大气压下的体积,等于22.4138×10-3米3/摩尔。所以普适气体常数的数值为
R=8.31441焦耳/摩尔·开
=8.20568×10-2大气压·升/摩尔·开
=1.9872卡/摩尔·开
【自由度】为了确定一个运动物体的位置,所需要的独立坐标数。除单原子分子外,一般分子的运动并不只限于作平动,还有转动和分子内原子之间的振动等,因此,要确定一个分子的位置,究竟需要几个独立坐标,要做具体的分析。需要看分子是单原子分子,还是双原子分子或多原子分子,而后才能确定。
要确定一个质点在空间的位置,只需要用三个独立坐标就可以了,所以质点的自由度就是三个,即三个平动自由度。如果给一个质点的运动附加了限制条件,则其自由度就要减少。如果一个质点被限制在一个平面(或曲面)内运动,那么,质点在这个平面(或曲面)上的位置只要两个坐标就可以确定,故只有两个自由度;如被限制在一条直线上(或曲线上)运动,那么,此质点在这条线上的位置只需要一个坐标即可确定,故只有一个自由度。对于一个刚体,它的任何运动都可分解为质心的平动和绕通过质心的轴的转动,所以,要确定一个刚体的位置就得用三个独立坐标(如x,y,z)来决定其质心的位置,还要用两个独立坐标,如角α、β(叫做欧拉角)来确定其过质心的转动轴的方位。这是因为一个转轴应该用三个角α、β、γ来确定,这三个角的关系如下,即
cos2α+cos2β+cos2γ=1
因此三个方向角只有两个是独立的。另外,这个刚体还可以绕轴转动,为决定刚体绕轴转动的角度还要有一个变量ψ。总之,要确定一个自由刚体的位置共需要六个独立变量,即自由刚体共有六个自由度,其中三个为质心平动的自由度,三个为绕质心转动的自由度。如果刚体的运动受到某种限制,那就不是一个自由刚体了,其运动的自由度也要减少。比如只能绕定点转动的刚体,就只有三个转动自由度;而绕定轴转动的刚体,就只有一个转动自由度。
【分子的自由度】即分子运动的自由度。即决定一个分子在空间的位置所需要的独立坐标数目。对于单原子分子,可忽略其本身的大小,即忽略其自转,而将其看成一个自由质点,那么它就只有三个平行自由度了;而对双原子分子,如氮、氢、氧等,其两个原子是通过一根键链联在一起的,其质心的平动自由度有三个。而两个原子还可以绕与键链垂直的两个轴转动,故它有两个转动自由度。另外两个原子还可以沿键链方向上振动,所以还可以有一个振动自由度(其能量比较少)。所以双原子分子共有六个自由度即三个平动自由度,两个转动自由度,一个振动自由度。(也有的书上忽略了能量较小的振动自由度认为双原子分子只有五个自由度);至于多原子分子,由于组成分子的结构情况各不相同,故必须按其具体的结构情况来分析分子运动的自由度。一般说,一个分子若由n个原子组成,那么这个分子最多有3n个自由度。而平动自由度总是3个,转动自由度最多也只能有3个,其余(3n—6)个只能是振动自由度。当分子受到某种限制时,其自由度就会相应地减少。
【能量按自由度均分定理】这是能量按分子的各个运动自由度平
是均匀地分配于每一个平动自由度上,每一个平动自由度上都具有相同
理”,简称为“能量均分定理”。能量均分定理,也是对大量分子无规则热运动统计平均的结果。对于个别分子来说,它在任一时刻的总动能,完全可能与根据能量均分定理所得出的平均值有很大的差别,而且每一
如果对同一个分子长时间运动情况来进行平均,其结果就会符合能量均分定理。也可在某一时刻,对大量分子的运动求平均,这和对一个分子长时间的运动求平均相同,这两种方法所得的结果是一样的。
动能之所以会按自由度均分,主要是因为大量分子无规则运动和相互碰撞的结果。在碰撞过程中,一个分子的能量可传递给另一个分子;一种形式的动能,也可以转化为另一种形式的动能。也就是说,一种运动的自由度,通过碰撞,可以转变成另一种运动的自由度。如果分配于某一种形式,或某一种自由度上的能量多了,那么在碰撞的过程中,能量大的运动形式或自由度,转化成其他运动形式的几率就比较大。因此,在达到热平衡时,动能就按自由度均匀分配了。在实际中,外界给予气体的能量,首先是加给器壁的,是器壁上的分子与气体分子的碰撞,并通过碰撞传递给气体分子的各个自由度的。可见碰撞是实现能量传递,并达到均匀分配的一个关键。
【理想气体的内能】所谓气体的内能,就是气体分子全部能量的总和。气体分子可以具有各种动能,如平动动能、转动动能及振动动能。由于分子内部即构成分子的原子之间存在着相互作用力,所以还应有与这种分子力(指分子内部的力)相关联的势能,即振动势能。另外,分子和分子之间也存在着相互作用,这也对气体的内能产生影响。但对理想气体来说,由于分子间的相互作用可以忽略不计,故理想气体的内能只是所有上述分子运动的动能(平动、转动、振动)及分子内原子之间的振动势能的总和。
【分子间的碰撞】分子间的碰撞是使气体内部能够达到热平衡,使分子按速度的分布具有规律性,并实现能量按自由度的均分的主要原因。同样分子间的碰撞,也是气体能产生扩散、热传导和粘滞现象的主要原因。所谓分子间的碰撞,并不像我们通常见到的宏观物体间接触碰撞那样,实际上,分子间的碰撞是在分子力作用下分子间产生相互散射的结果。因为分子间的距离较近时分子力的性质是引力。但在分子间的距离近到一定程度时,分子力的性质就表现为斥力了,而且这种斥力会随距离的接近而迅速增大。在这种强大的分子斥力的作用下,迫使分子改变原来的运动方向,因而产生分子间的散射,这就是通常所说的分子间的“碰撞”。我们可把分子看作是具有一定体积的弹性球,而由于分子间的相互作用所产生的散射,就可以看成弹性球间的弹性碰撞过程。
【内摩擦现象】内摩擦的出现是由于流体内部各层之间的整体运动速度不同,使分子在迁移过程中产生了动量的输运而造成的。当气体流动时,其定向的整体流速矢量要叠加在每个分子热运动的速度上;分子热运动的速度虽然很大,但因为是无规则的,所以热运动速度矢量的平均值为零。气体的流速虽然比分子的热运动速度小得多,但它却具有确定的方向和一定的数值。不论是在液体内部还是在气体内部,只要存在速度梯度,就会有内摩擦现象产生。
【真空度】绝对真空的状态是不可能达到的,只能在某种程度上接近这种状态,我们把接近真空的程度称为真空度。通常所指的真空是指十分稀薄的空间,在这里压强远小于正常的大气压强,残存的气体对所在空间进行的物理过程并无明显影响。至于低到何种程度,则应由过程的具体要求而定。真空度的高低是由气体压强的大小来量度。一般压强小于13.33帕(10-1托)的空间叫低真空,0.13~0.13×10-5帕(10-3~10-8托)范围内的空间叫高真空,压强小于0.13×10-5帕(10-8托)的空间称为超高真空。目前人工所能制造的最高真空压强约为0.13×10-10帕(10-13托)。
【真空计】它是测量真空度的量具。真空计的类型很多,其灵敏度,量程和用途各不相同,常用的有麦克劳真空计、皮喇尼真空计和热阴极电离真空计等。
【统计规律】统计规律是对大量偶然事件整体起作用的规律,它表现了这些事物整体的本质和必然的联系。通过对大量微观粒子运动规律的研究,来解释物质的宏观性质称为统计物理学。通过观测发现,在一定宏观条件下,大量的微观粒子的集体运动却遵循着一种规律,人们把这种规律性叫做统计规律性。它不仅对研究热现象有重要的意义,而且在其他自然现象中也是普遍存在的。统计规律是对大量偶然事件整体起作用的规律。它表现了这些事物整体的本质和必然的联系,在这里个别事物的特征和偶然联系退居次要地位。需指出的是,这里所说的个别事物的偶然性是相对于大量事物整体的统计规律而言的,这并不意味着偶然性是无原因的。一切偶然性都有自己的原因。统计规律是以动力学规律为基础的,它不可能脱离由动力学规律所决定的个别事件而存在。但当体系中所包含的粒子数目极多时,就导致在质上全新的运动形式的出现,在这里运动形式发生了从量到质的飞跃。其最重要的特点就是在一定宏观条件下的稳定性,这是由统计规律所制约的。统计规律的另一个特点是永远伴随着涨落现象,统计规律与涨落现象是不可分割的,这正反映了必然性与偶然性之间相互依存的辨证关系。
【涨落现象】当对所研究系统的某一宏观物理量进行测量时,每次测得的实际数值必然会表现出相对于它的统计平均值的偏差,这种现象称为“涨落”。统计规律与涨落现象是不可分割的。有关涨落现象的例子很多,如布朗运动就是一典型例子。布朗运动是分子运动论的重要实验基础,布朗运动的研究对涨落理论的建立起了重要作用。又如液体中的临界乳光现象和光在空气中的散射现象,都是由于媒质密度的涨落引起的。在各种电路中也可以观察到由于带电粒子的热运动而引起的电流涨落现象。由于电学仪器已达到很高的精度,而涨落现象会严重地影响仪器的工作。例如,在电子管、半导体晶体管和光电管中电流涨落所引起的“噪音”是限制无线电电子学接受仪器、电视和自动控制等方面仪器灵敏度的基本原因之一;又如,当用电流计测量微弱的电流时,如果待测的电流小于涨落电流,或待测电流引起的电流计线圈的偏转小于线圈本身的布朗运动,则这种测量将无法进行。因此研究涨落现象已具有重要的实际意义。