Home | science | math | handbook | function | graphics | coding | example | help | 中文

Math Handbook Calculator

+ - * / ^ ! o `oo` `alpha` `beta` `gamma` `Gamma` `theta` `pi` and ( )
sin(x) cos(x) tan(x) cot(x) sec(x) csc(x) `sin^(-1)(x)` `cos^(-1)(x)` `tan^(-1)(x)`
sinh(x) cosh(x) tanh(x) coth(x) `sinh^(-1)(x)` `cosh^(-1)(x)` `tanh^(-1)(x)`
x `x^2` `sqrt(x)` `root3(x)` `e^-x` exp(x) ln(x) log(x) `log_10 (x)` |x| W(x) `((3),(x))`
x! x!! `Gamma(x)` `gamma(2,0,x)` `psi(x)` erf(x) `Phi(x)` Ei(x) li(x) Si(x) `zeta(x)` `E _0.5 (x^0.5)`
f(x) = x; `sum_(x=0)^5`(x) `int`y(x) dx `int y(x) (dx)^0.5` `int_0^1` sin(x) dx `d/dx`y(x) `(d^(1) y)/dx^(1)` `y^((1))(x)` y' y''








Input:
pdsolve(ds(y,t,0.5)-a^2*ds(y,x,2))

Write:
`pdsolve(ds(y,t,0.5)-a^2*ds(y,x,2))`



Compute: $$pdsolve(\frac{d^{{0.5}}y}{dt^{{0.5}}}-{a}^{2}\ \frac{d^{{2}}y}{dx^{{2}}})$$

Output: $$ pdsolve(\frac{d^{{0.5}}y}{dt^{{0.5}}}-{a}^{2}\ \frac{d^{{2}}y}{dx^{{2}}}) == 2\ c_1+c_2\ x+C_1\ (1.1283791670955126\ {a}^{2}\ \sqrt{t}+0.5\ {x}^{2})+C_1\ ((-1.1283791670955126)\ \sqrt{t}+(-0.5)\ \frac{1}{a^2}\ {x}^{2}) $$ Result:$$2\ c_1+c_2\ x+C_1\ (1.1283791670955126\ {a}^{2}\ \sqrt{t}+0.5\ {x}^{2})+C_1\ ((-1.1283791670955126)\ \sqrt{t}+(-0.5)\ \frac{1}{a^2}\ {x}^{2})$$



zoom graph by mouse wheel.
Home | list | about | forum | wiki | contact | copyright | index | 中文|