Input:
pdsolve(ds(y,t,0.5)=ds(y,x,2)-exp(x)-exp(t))
Write:
`pdsolve(ds(y,t,0.5)=ds(y,x,2)-exp(x)-exp(t))`
Compute:
$$pdsolve(\frac{d^{{0.5}}y}{dt^{{0.5}}}=\frac{d^{{2}}y}{dx^{{2}}} - exp(x) - exp(t))$$
Output:
$$pdsolve(\frac{d^{{0.5}}y}{dt^{{0.5}}}=\frac{d^{{2}}y}{dx^{{2}}} - exp(x) - exp(t))== 2\ C_1-exp(t)+exp(x)+C_2\ exp(t+x)+C_2\ x+C_3\ (1.1283791670955126\ \sqrt{t}+\frac{1}{2}\ {x}^{2})$$
Result: $$2\ C_1-exp(t)+exp(x)+C_2\ exp(t+x)+C_2\ x+C_3\ (1.1283791670955126\ \sqrt{t}+\frac{1}{2}\ {x}^{2})$$
zoom graph by mouse wheel.