Input:
pdsolve(ds(y,t)=ds(y,x,2) +1/x*ds(y,x,1))
Write:
`pdsolve(ds(y,t)=ds(y,x,2) +1/x*ds(y,x,1))`
Compute:
$$pdsolve(\frac{dy}{dt} =\frac{d^{{2}}y}{dx^{{2}}}+\frac {1}{x}\ \frac{d^{{1}}y}{dx^{{1}}})$$
Output:
$$pdsolve(\frac{dy}{dt} =\frac{d^{{2}}y}{dx^{{2}}}+\frac {1}{x}\ \frac{d^{{1}}y}{dx^{{1}}})== 2\ C_1+C_4\ Ei(\frac {(\frac{-1}{4})}{t}\ {x}^{2})+C_2\ log(x)+C_3\ (t+\frac{1}{4}\ {x}^{2})$$
Result: $$2\ C_1+C_4\ Ei(\frac {(\frac{-1}{4})}{t}\ {x}^{2})+C_2\ log(x)+C_3\ (t+\frac{1}{4}\ {x}^{2})$$
zoom graph by mouse wheel.