Input:
dsolve(y(2,x)-x*y(1,x)-x*y-2x)
Write:
`dsolve(y(2,x)-x*y(1,x)-x*y-2x)`
Compute:
$$dsolve(y^{(2)}(x) - x\ y^{(1)}(x) - x\ y - 2\ x)$$
Output:
$$dsolve(y^{(2)}(x) - x\ y^{(1)}(x) - x\ y - 2\ x)== -2+C_1\ exp(-x)\ (-2-x)+C_2\ ((-2)\ exp(2+x+\frac{1}{2}\ {x}^{2})+1.4142135623730951\ erfi(\sqrt {2}+\sqrt {\frac{1}{2}}\ x)\ exp(-x)\ \sqrt{\pi }\ (2+x))$$
Result: $$-2+C_1\ exp(-x)\ (-2-x)+C_2\ ((-2)\ exp(2+x+\frac{1}{2}\ {x}^{2})+1.4142135623730951\ erfi(\sqrt {2}+\sqrt {\frac{1}{2}}\ x)\ exp(-x)\ \sqrt{\pi }\ (2+x))$$
zoom graph by mouse wheel.