Input:
pdsolve(ds(y,t)=ds(y,x,1)*y^2)
Write:
`pdsolve(ds(y,t)=ds(y,x,1)*y^2)`
Compute:
$$pdsolve(\frac{dy}{dt} =\frac{d^{{1}}y}{dx^{{1}}}\ {y}^{2})$$
Output:
$$pdsolve(\frac{dy}{dt} =\frac{d^{{1}}y}{dx^{{1}}}\ {y}^{2})== \sqrt {(\frac {(-1)}{C_2+t})\ (C_1+x)}\ and\ (-i)\ (\frac{1}{\sqrt{C_2+t}})\ (\sqrt{C_1+x})$$
Result: $$\sqrt {(\frac {(-1)}{C_2+t})\ (C_1+x)}\ and\ (-i)\ (\frac{1}{\sqrt{C_2+t}})\ (\sqrt{C_1+x})$$
zoom graph by mouse wheel.