Input:
pdsolve(ds(y,t)--y*ds(y,x)=v*ds(y,x,2))
Write:
`pdsolve(ds(y,t)--y*ds(y,x)=v*ds(y,x,2))`
Compute:
$$pdsolve(\frac{dy}{dt} +y\ \frac{dy}{dx} =v\ \frac{d^{{2}}y}{dx^{{2}}})$$
Output:
$$pdsolve(\frac{dy}{dt} +y\ \frac{dy}{dx} =v\ \frac{d^{{2}}y}{dx^{{2}}})== \frac {(-1)}{C_1}\ C_2+\frac {(-2)\ C_1\ v}{C_3+C_2\ t+C_1\ x}\ and\ \frac {(-1)}{C_1}\ C_2+(-2)\ C_1\ tanh(C_3+C_2\ t+C_1\ x)\ v$$
Result: $$\frac {(-1)}{C_1}\ C_2+\frac {(-2)\ C_1\ v}{C_3+C_2\ t+C_1\ x}\ and\ \frac {(-1)}{C_1}\ C_2+(-2)\ C_1\ tanh(C_3+C_2\ t+C_1\ x)\ v$$
zoom graph by mouse wheel.