Input:
pdsolve(ds(y,t)--2ds(y,x)*ds(y,x,2)--y*ds(y,x,3)=0)
Write:
`pdsolve(ds(y,t)--2ds(y,x)*ds(y,x,2)--y*ds(y,x,3)=0)`
Compute:
$$pdsolve(\frac{dy}{dt} +2\ \frac{dy}{dx} \ \frac{d^{{2}}y}{dx^{{2}}}+y\ \frac{d^{{3}}y}{dx^{{3}}}=0)$$
Output:
$$pdsolve(\frac{dy}{dt} +2\ \frac{dy}{dx} \ \frac{d^{{2}}y}{dx^{{2}}}+y\ \frac{d^{{3}}y}{dx^{{3}}}=0)== C_1+C_2\ (-ln^{(-2)}(y)-\frac{1}{2}\ ln^{(-1)}(y^{(1)}(x))+2\ t)$$
Result: $$C_1+C_2\ (-ln^{(-2)}(y)-\frac{1}{2}\ ln^{(-1)}(y^{(1)}(x))+2\ t)$$
zoom graph by mouse wheel.