Input:
dsolve(y(1,x)-exp(y)-x-x*x=0)
Write:
`dsolve(y(1,x)-exp(y)-x-x*x=0)`
Compute:
$$dsolve(y^{(1)}(x) - exp(y) - x - x\ x=0)$$
Output:
$$dsolve(y^{(1)}(x) - exp(y) - x - x\ x=0)== -log(C_1\ exp((\frac{-1}{2})\ {x}^{2}-\frac{1}{3}\ {x}^{3})-exp((\frac{-1}{2})\ {x}^{2}-\frac{1}{3}\ {x}^{3})\ \int exp(\frac{1}{2}\ {x}^{2}+\frac{1}{3}\ {x}^{3})\ dx)$$
Result: $$-log(C_1\ exp((\frac{-1}{2})\ {x}^{2}-\frac{1}{3}\ {x}^{3})-exp((\frac{-1}{2})\ {x}^{2}-\frac{1}{3}\ {x}^{3})\ \int exp(\frac{1}{2}\ {x}^{2}+\frac{1}{3}\ {x}^{3})\ dx)$$
zoom graph by mouse wheel.