Input:
d((sin(x) * x^2) / (1 + tan(cot(x))))
Write:
`d((sin(x) * x^2) / (1 + tan(cot(x))))`
Compute:
$$\frac{d}{dx} (\frac {sin(x)\ {x}^{2}}{1+tan(cot(x))})$$
Output:
$$\frac{d}{dx} (\frac {sin(x)\ {x}^{2}}{1+tan(cot(x))})== (\frac {2\ sin(x)}{1+tan(cot(x))})\ x+({csc(x)}^{2}\ {sec(cot(x))}^{2}\ sin(x)\ \frac{1}{(1+tan(cot(x)))^2}+\frac {cos(x)}{1+tan(cot(x))})\ {x}^{2}$$
Result: $$(\frac {2\ sin(x)}{1+tan(cot(x))})\ x+({csc(x)}^{2}\ {sec(cot(x))}^{2}\ sin(x)\ \frac{1}{(1+tan(cot(x)))^2}+\frac {cos(x)}{1+tan(cot(x))})\ {x}^{2}$$
zoom graph by mouse wheel.