Input:
ODE(y(2,x)+y(1,x)+2x*y+2x^2+1)
Write:
`ODE(y(2,x)+y(1,x)+2x*y+2x^2+1)`
Compute:
$$dsolve(y^{(2)}(x)+y^{(1)}(x)+2\ x\ y+2\ {x}^{2}+1)$$
Output:
$$dsolve(y^{(2)}(x)+y^{(1)}(x)+2\ x\ y+2\ {x}^{2}+1)== Ai(\frac {(\frac{1}{4}-2\ x)}{\sqrt[3] {4}})\ C_1\ exp((\frac{-1}{2})\ x)+Bi(\frac {(\frac{1}{4}-2\ x)}{\sqrt[3] {4}})\ C_2\ exp((\frac{-1}{2})\ x)-x$$
Result: $$Ai(\frac {(\frac{1}{4}-2\ x)}{\sqrt[3] {4}})\ C_1\ exp((\frac{-1}{2})\ x)+Bi(\frac {(\frac{1}{4}-2\ x)}{\sqrt[3] {4}})\ C_2\ exp((\frac{-1}{2})\ x)-x$$
zoom graph by mouse wheel.